Acta Optica Sinica, Volume. 44, Issue 2, 0228001(2024)

Tension Sensors with High Sensitivity Based on Flexible Metamaterial

Guangsheng Deng1,2、*, Linying Fang2, Aoran Guo2, Jun Yang1,2, Ying Li1,2, and Zhiping Yin1,2
Author Affiliations
  • 1Special Display and Imaging Technology Innovation Center of Anhui Province, Academy of Opto-Electric Technology, Hefei University of Technology, Hefei 230009, Anhui , China
  • 2Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, Anhui , China
  • show less
    References(24)

    [1] Ma J H, Wang P, Chen H Y et al. Highly sensitive and large-range strain sensor with a self-compensated two-order structure for human motion detection[J]. ACS Applied Materials & Interfaces, 11, 8527-8536(2019).

    [2] Li Y, Luo S D, Yang M C et al. Poisson ratio and piezoresistive sensing: a new route to high-performance 3D flexible and stretchable sensors of multimodal sensing capability[J]. Advanced Functional Materials, 26, 2900-2908(2016).

    [3] Surjadi J U, Gao L B, Du H F et al. Mechanical metamaterials and their engineering applications[J]. Advanced Engineering Materials, 21, 1800864(2019).

    [4] Hwang T Y, Choi Y, Song Y et al. A noble gas sensor platform: linear dense assemblies of single-walled carbon nanotubes (LACNTs) in a multi-layered ceramic/metal electrode system (MLES)[J]. Journal of Materials Chemistry C, 6, 972-979(2018).

    [5] Amjadi M, Kyung K U, Park I et al. Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review[J]. Advanced Functional Materials, 26, 1678-1698(2016).

    [6] Yu H, Lian Y L, Sun T et al. Two-sided topological architecture on a monolithic flexible substrate for ultrasensitive strain sensors[J]. ACS Applied Materials & Interfaces, 11, 43543-43552(2019).

    [7] Lou Z, Wang L L, Jiang K et al. Programmable three-dimensional advanced materials based on nanostructures as building blocks for flexible sensors[J]. Nano Today, 26, 176-198(2019).

    [8] Long Y, Zhao X L, Jiang X et al. A porous graphene/polydimethylsiloxane composite by chemical foaming for simultaneous tensile and compressive strain sensing[J]. FlatChem, 10, 1-7(2018).

    [9] Liu H, Li Q M, Zhang S D et al. Electrically conductive polymer composites for smart flexible strain sensors: a critical review[J]. Journal of Materials Chemistry C, 6, 12121-12141(2018).

    [10] Kim T, Cho M, Yu K. Flexible and stretchable bio-integrated electronics based on carbon nanotube and graphene[J]. Materials, 11, 1163(2018).

    [11] Wang Q F, Wang Z Y, Han C et al. Quantitative detection of biological mixtures based on terahertz metamaterial chip[J]. Chinese Journal of Lasers, 48, 2314001(2021).

    [12] Jing X F, Qin G H, Zhang P. Broadband silicon-based tunable metamaterial microfluidic sensor[J]. Photonics Research, 10, 2876-2885(2022).

    [13] Qiu Y Q, Wang G Q, Lang T T. Terahertz metamaterial biosensor based on double split-ring structure[J]. Acta Optica Sinica, 43, 0428002(2023).

    [14] Yang J P, Wang M C, Deng H et al. Dual-band terahertz sensor based on metamaterial absorber integrated microfluidic[J]. Acta Optica Sinica, 41, 2328001(2021).

    [15] Luo Z W, Hu X T, Tian X Y et al. Structure-property relationships in graphene-based strain and pressure sensors for potential artificial intelligence applications[J]. Sensors, 19, 1250(2019).

    [16] Pryce I M, Aydin K, Kelaita Y A et al. Highly strained compliant optical metamaterials with large frequency tunability[J]. Nano Letters, 10, 4222-4227(2010).

    [17] Zheng L R, Sun X Y, Xu H et al. Strain sensitivity of electric-magnetic coupling in flexible terahertz metamaterials[J]. Plasmonics, 10, 1331-1335(2015).

    [18] Li J N, Shah C M, Withayachumnankul W et al. Mechanically tunable terahertz metamaterials[J]. Applied Physics Letters, 102, 121101(2013).

    [19] Jeong H, Cui Y P, Tentzeris M M et al. Hybrid (3D and inkjet) printed electromagnetic pressure sensor using metamaterial absorber[J]. Additive Manufacturing, 35, 101405(2020).

    [20] Lu T G, Zhang D W, Qiu P Z et al. Ultrathin terahertz dual-band perfect metamaterial absorber using asymmetric double-split rings resonator[J]. Symmetry, 10, 293(2018).

    [21] Liang G H, Wang Y C, Mei D Q et al. Flexible capacitive tactile sensor array with truncated pyramids as dielectric layer for three-axis force measurement[J]. Journal of Microelectromechanical Systems, 24, 1510-1519(2015).

    [22] Lipomi D J, Vosgueritchian M, Tee B C K et al. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes[J]. Nature Nanotechnology, 6, 788-792(2011).

    [23] Amjadi M, Pichitpajongkit A, Lee S J et al. Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite[J]. ACS Nano, 8, 5154-5163(2014).

    [24] Guo J J, Liu X Y, Jiang N et al. Highly stretchable, strain sensing hydrogel optical fibers[J]. Advanced Materials, 28, 10244-10249(2016).

    Tools

    Get Citation

    Copy Citation Text

    Guangsheng Deng, Linying Fang, Aoran Guo, Jun Yang, Ying Li, Zhiping Yin. Tension Sensors with High Sensitivity Based on Flexible Metamaterial[J]. Acta Optica Sinica, 2024, 44(2): 0228001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Jul. 20, 2023

    Accepted: Sep. 19, 2023

    Published Online: Jan. 15, 2024

    The Author Email: Deng Guangsheng (dgsh@hfut.edu.cn)

    DOI:10.3788/AOS231287

    Topics