High Power Laser and Particle Beams, Volume. 34, Issue 1, 011006(2022)
Removal of space debris by pulsed laser: Overview and future perspective
[2] Le May S, Gehly S, Carter B A, et al. Space debris collision probability analysis for proposed global broadband constellations[J]. Acta Astronautica, 151, 445-455(2018).
[4] Kessler D J. Collisional cascading: the limits of population growth in low earth orbit[J]. Advances in Space Research, 11, 63-66(1991).
[6] [6] Klinkrad H. Space debris: models risk analysis[M]. Berlin: Springer, 2006.
[8] [8] Šilha J. Space debris: optical measurements[M]Kabáth P, Jones D, Skarka M. Reviews in Frontiers of Modern Astrophysics. Cham: Springer, 2020: 121.
[9] Pool R. Scrapheap in the sky [Technology space debris][J]. Engineering & Technology, 16, 44-47(2021).
[15] Mark C P, Kamath S. Review of active space debris removal methods[J]. Space Policy, 47, 194-206(2019).
[16] Kelly P W, Bevilacqua R, Mazal L, et al. TugSat: removing space debris from geostationary orbits using solar sails[J]. Journal of Spacecraft and Rockets, 55, 437-450(2018).
[17] [17] Colombo C, Rossi A, Vedova F D, et al. Drag solar sail debiting: reentry time versus cumulative collision probability[C]68th International Astronautical Congress (IAC 2017). IAF, 2017: 35353553.
[18] Soulard R, Quinn M N, Tajima T, et al. ICAN: a novel laser architecture for space debris removal[J]. Acta Astronautica, 105, 192-200(2014).
[19] Sänger E. On the theory of photon rocket[J]. Engineer Archive, 21, 213-226(1953).
[20] Kantrowitz A. Propulsion to orbit by ground-based laser[J]. Astronautics and Aeronautics, 10, 74-76(1972).
[21] Phipps C R, Albrecht G, Friedman H, et al. ORION: clearing near-Earth space debris using a 20-kW, 530-nm, Earth-based, repetitively pulsed laser[J]. Laser and Particle Beams, 14, 1-44(1996).
[22] Van Der Pas N, Lousada J, Terhes C, et al. Target selection and comparison of mission design for space debris removal by DLR׳s advanced study group[J]. Acta Astronautica, 102, 241-248(2014).
[23] Shan Minghe, Guo Jian, Gill E. Review and comparison of active space debris capturing and removal methods[J]. Progress in Aerospace Sciences, 80, 18-32(2016).
[26] Schall W O. Laser radiation for cleaning space debris from lower earth orbits[J]. Journal of Spacecraft and Rockets, 39, 81-91(2002).
[27] [27] Vasile M, Maddock C, Saunders C. bital debris removal with solar concentrats[C]61st International Astronautical Congress. 2010.
[28] [28] Vetrisano M, Thiry N, Vasile M. Detumbling large space debris via laser ablation[C]2015 IEEE Aerospace Conference. IEEE, 2015: 110.
[31] [31] Ben F, Conan R, D''geville C, et al. Adaptive optics f laser space debris removal[C]Proceedings of SPIE 8447. Adaptive Optics Systems III. 2012: 844744.
[32] Liedahl D A, Rubenchik A, Libby S B, et al. Pulsed laser interactions with space debris: target shape effects[J]. Advances in Space Research, 52, 895-915(2013).
[33] [33] Phipps C R. Laser space debris removal: now, not later[C]Proceedings of SPIE 9255. XX International Symposium on HighPower Laser Systems Applications 2014. 2015: 92553Q.
[34] Phipps C R. L’ADROIT–A spaceborne ultraviolet laser system for space debris clearing[J]. Acta Astronautica, 104, 243-255(2014).
[35] Phipps C R, Bonnal C. A spaceborne, pulsed UV laser system for re-entering or nudging LEO debris, and re-orbiting GEO debris[J]. Acta Astronautica, 118, 224-236(2016).
[37] [37] Zhao Jianheng. Analysis on laser removal of space debris[C]Condensed Proceedings of the 14th National Conference on Physical Mechanics. 2016: 1.
[40] Afanas’ev Y V, Basov N G, Krokhin O N, et al. Gas-dynamic processes in irradiation of solids[J]. Soviet Physics Technical Physics, 14, 669-676(1969).
[41] Sprangle P, Esarey E, Ting A. Nonlinear theory of intense laser-plasma interactions[J]. Physical Review Letters, 64, 2011-2014(1990).
[42] Holmes B S, Maher W E, Hall R B. Laser-target interaction near the plasma-formation threshold[J]. Journal of Applied Physics, 51, 5699-5707(1980).
[43] Shih C Y, Wu Chengping, Shugaev M V, et al. Atomistic modeling of nanoparticle generation in short pulse laser ablation of thin metal films in water[J]. Journal of Colloid and Interface Science, 489, 3-17(2017).
[44] Mahmood S, Rawat R S, Springham S V, et al. Material ablation and plasma plume expansion study from Fe and graphite targets in Ar gas atmosphere[J]. Applied Physics A, 101, 695-699(2010).
[45] Schmitz T A, Koch J, Günther D, et al. Characterization of aerosol plumes in nanosecond laser ablation of molecular solids at atmospheric pressure[J]. Applied Physics B, 100, 521-533(2010).
[47] Pakhomov A V, Gregory D A. Ablative laser propulsion: an old concept revisited[J]. AIAA Journal, 38, 725-727(2000).
[48] Phipps C R, Baker K L, Libby S B, et al. Removing orbital debris with pulsed lasers[J]. AIP Conference Proceedings, 1464, 468-480(2012).
[49] Phipps C R, Boustie M, Chevalier J M, et al. Laser impulse coupling measurements at 400 fs and 80 ps using the LULI facility at 1057 nm wavelength[J]. Journal of Applied Physics, 122, 193103(2017).
[50] [50] D''Souza B C. Development of impulse measurement techniques f the investigation of transient fces due to laserinduced ablation[D]. Los Angeles: University of Southern Califnia, 2007.
[51] Phipps C R Jr, Turner T P, Harrison R F, et al. Impulse coupling to targets in vacuum by KrF, HF, and CO2 single-pulse lasers[J]. Journal of Applied Physics, 64, 1083-1096(1988).
[52] Phipps C, Luke J, Funk D, et al. Laser impulse coupling at 130 fs[J]. Applied Surface Science, 252, 4838-4844(2006).
[53] Munafò A, Alberti A, Pantano C, et al. A computational model for nanosecond pulse laser-plasma interactions[J]. Journal of Computational Physics, 406, 109190(2020).
[54] Scharring S, Eisert L, Lorbeer R A, et al. Momentum predictability and heat accumulation in laser-based space debris removal[J]. Optical Engineering, 58, 011004(2018).
Get Citation
Copy Citation Text
Jichuan Wu, Jianheng Zhao, Yuanjie Huang, Li Zhang, Yongqiang Zhang, Fuli Tan. Removal of space debris by pulsed laser: Overview and future perspective[J]. High Power Laser and Particle Beams, 2022, 34(1): 011006
Category: Thermal and Mechanical Effects of Laser
Received: Jul. 30, 2021
Accepted: --
Published Online: Jan. 25, 2022
The Author Email: Zhang Yongqiang (minizhang_0804@163.com)