Laser & Optoelectronics Progress, Volume. 53, Issue 9, 91602(2016)

Binding Energy of Bound Polaron and the Polaron Shift as the Functions of Composition x in Wurtzite ZnO/MgxZn1-xO Quantum Well Under the Built-in Electric Field

Zhao Fengqi* and Pan Hongyu
Author Affiliations
  • [in Chinese]
  • show less
    References(32)

    [1] [1] Su Shichen, Lü Youming, Mei Ting. Fabrication and optical properties of ZnO/ZnMgO multiple quantum wells on m-sapphire substrates[J]. Acta Physica Sinica, 2011, 60(9): 096801.

    [2] [2] Ozgür , Alivov Y I, Liu C, et al. A comprehensive review of ZnO materials and devices[J]. J Appl Phys, 2005, 98(4): 041301.

    [3] [3] Bagnall D M, Chen Y F, Zhu Z, et al. High temperature excitonic stimulated emission from ZnO epitaxial layers[J]. Appl Phys Lett, 1998, 73(8): 1038-1040.

    [4] [4] Liu Hongxia, Zhou Shengming, Li Shuzhi, et al. Growth of ZnO microrod array films and their optical properties[J]. Acta Physica Sinica, 2006, 55(3): 1398-1401.

    [5] [5] He Xiaoxiao, Wang Wenjun, Li Shuhong, et al. Design and properties analogy of ZnO-based multilayer transparent conducting film[J]. Chinese J Lasers, 2014, 41(6): 0607001.

    [6] [6] Lee B C, Kim K V, Stroscio M A, et al. Electron-optical-phonon scattering in wurtzite crystals[J]. Phys Rev B, 1997, 56(3): 997-1000.

    [7] [7] Makino T, Segawa Y, Kawasaki M, et al. Band gap engineering based on MgxZn1-xO and CdyZn1-yO ternary alloy films[J]. Appl Phys Lett, 2001, 78(9): 1237-1239.

    [8] [8] Makino T, Tamura K, Chia C H, et al. Radiative recombination of electron-hole pairs spatially separated due to quantum-confined Stark and Franz-Keldish effects in ZnO/Mg0.27Zn0.73O quantum wells[J]. Appl Phys Lett, 2002, 81(13): 2355-2357.

    [9] [9] Fan W J, Xia J B, Agus P A, et al. Band parameters and electronic structures of wurtzite ZnO and ZnO/MgZnO quantum wells[J]. J Appl Phys, 2006, 99(1): 013702.

    [10] [10] Coleman V A, Buda M, Tan H H, et al. Rapid communication: Observation of blue shifts in ZnO/ZnMgO multiple quantum well structures byion-implantation induced intermixing[J]. Semicond Sci Technol, 2006, 21(3): L25- L28.

    [11] [11] Furno E, Chiaria S, Penna M, et al. Electronic and optical properties of MgxZn1-xO and BexZn1-xO quantum wells[J]. J Elect Mater, 2010, 39(7): 936-944.

    [12] [12] Jiang Jianhui, Wu Kongping, Lu Kailin, et al. Effect of intermediate-band on the ZnO/ZnTe photovoltaic solar cell[J]. Acta Optica Sinica, 2015, 35(9): 0916003.

    [13] [13] Ge Lin, Xu Jianping, Zhang Xiaosong, et al. Study on all-inorganic light emitting devices based on ZnO nanorods with modification of SiO2[J]. Acta Optica Sinica, 2013, 33(8): 0823004.

    [14] [14] Coli G, Bajaj K K. Excitonic transitions in ZnO/MgZnO quantum well Heterostructures[J]. Appl Phys Lett, 2001, 78(19): 2861-2863.

    [15] [15] Fan W J, Abiyasa A P, Tan S T, et al. Electronic structures of wurtzite ZnO and ZnO/MgZnO quantum well[J]. J Cryst Growth, 2006, 287(1): 28-33.

    [16] [16] Ahn D, Park S H, Park E H, et al. Optical gain and luminescence of a ZnO-MgZnO quantum well[J]. IEEE Photonics Technology Letters, 2006, 18(2): 349-351.

    [17] [17] Zeng Z P, Wei S Y, Wei J B, et al. Hydrogenic impurity states in wurtzite ZnO/MgZnO quantum dot[J]. Mod Phys Lett B, 2010, 24(28): 2793-2801.

    [18] [18] Bretagnon T, Lefebvre P, Guillet T, et al. Barrier composition dependence of the internal electric field in ZnO/Zn1-xMgxO quantum wells[J]. Appl Phys Lett, 2007, 90(20): 201912.

    [19] [19] Park S H. Exciton binding energies in wurtzite ZnO/MgZnO quantum wells with spontaneous and piezoelectric polarizations[J]. J Korean Phys So, 2007, 51(4): 1404-1408.

    [20] [20] Stlzel M, Kupper J, Brandt M, et al. Electronic and optical properties of ZnO/(Mg,Zn)O quantum wells with and without a distinct quantum-confined Stark effect [J]. J Appl Phys, 2012, 111(6): 063701.

    [21] [21] Wang L, Ma J G, Xu H Y. Anisotropic strained cubic MgZnO/MgO multiple-quantum-well nanorods: Growths and optical properties[J]. Appl Phys Lett, 2013, 102(3): 031905.

    [22] [22] Su S C, Zhu H, Zhang L X, et al. Low-threshold lasing action in an asymmetric double ZnO/ZnMgO quantum well structure[J]. Appl Phys Lett, 2013, 103(13): 131104.

    [23] [23] Puls J, Sadofev S, Schafer P, et al. Optical in-plane anisotropy of ZnO/(Zn,Mg)O quantum wells grown on a-plane sapphire: Implications for optical spin control[J]. Phys Rev B, 2014, 89(8): 081301.

    [24] [24] Lee B C, Kim K W, Stroscio M A, et al. Optical-phonon confinement and scattering in wurtzite heterostructures[J]. Phys Rev B, 1998, 58(8): 4860-4865.

    [25] [25] Komirenko S M, Kim K W, Stroscio M A, et al. Dispersion of polar optical phonons in wurtzite quantum wells[J]. Phys Rev B, 1999, 59(7): 5013-5020.

    [26] [26] Shi J J. Interface optical-phonon modes and electron-interface-phonon interactions in wurtzite GaN/AIN quantum wells[J]. Phys Rev B, 2003, 68(16): 165335.

    [27] [27] Shi J J, Chu X L, Goldys E M. Propagating optical-phonon modes and their electron phonon interaction in wurtzite GaN/AlxGa1-xN quantum wells[J]. Phys Rev B, 2004, 70(11): 115318.

    [28] [28] Li L, Liu D, Shi J J. Electron quasi-confined-optical-phonon interactions in wurtzite GaN/AlN quantum wells[J]. Eur Phys J B, 2005, 44(4): 401-413.

    [29] [29] Zhao F Q, Zhang M, Bai J H. Effects of electron-optical phonon interactions on the polaron energy in a wurtzite ZnO/MxZn1-xO quantum well[J]. Chin Phys B, 2015, 24(9): 097105.

    [30] [30] Zhao F Q, Guo Z Z. Effects of the built-in electric field on polaron effects in a wurtzite ZnO/MgxZn1-xO quantum well[J]. J Appl Phys, 2015, 118(19): 195704.

    [31] [31] Fan X F, Sun H D, Shen Z X, et al. A first-principle analysis on the phase stabilities, chemical bonds and band gaps of wurtzite structure AxZn1-xO alloys (A=Ca, Cd, Mg)[J]. J Phys Condens Matter, 2008, 20(23): 235221.

    [32] [32] Morhain C, Bretagnon T, Lefebvre P, et al. Internal electric field in wurtzite ZnO/ Zn0.78Mg0.22O quantum wells[J]. Phys Rev B, 2005, 72(24): 241305.

    Tools

    Get Citation

    Copy Citation Text

    Zhao Fengqi, Pan Hongyu. Binding Energy of Bound Polaron and the Polaron Shift as the Functions of Composition x in Wurtzite ZnO/MgxZn1-xO Quantum Well Under the Built-in Electric Field[J]. Laser & Optoelectronics Progress, 2016, 53(9): 91602

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Materials

    Received: May. 4, 2016

    Accepted: --

    Published Online: Sep. 14, 2016

    The Author Email: Fengqi Zhao (zhaofengqi@126.com)

    DOI:10.3788/lop53.091602

    Topics