Journal of the Chinese Ceramic Society, Volume. 51, Issue 9, 2492(2023)

Recent Development on Energy-Efficient Glazing for Multi-Band Modulation

LI Yiyi*... LI Shangjing and HU Bin |Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    References(65)

    [1] [1] KE Y J, ZHOU C Z, ZHOU Y, et al. Emerging thermal-responsive materials and integrated techniques targeting the energy-efficient smart window application[J]. Adv Funct Mater, 2018, 28(22): 1800113.

    [2] [2] KE Y J, CHEN J W, LIN G J, et al. Smart windows: electro-, thermo-, mechano-, photochromics, and beyond[J]. Adv Energy Mater, 2019, 9(39): 1902066.

    [3] [3] ZHAO X P, AILI A, ZHAO D L, et al. Dynamic glazing with switchable solar reflectance for radiative cooling and solar heating[J]. Cell Rep Phys Sci, 2022, 3(4): 100853.

    [4] [4] TONG S W, GOH W P, HUANG X H, et al. A review of transparent-reflective switchable glass technologies for building facades[J]. Renew Sustain Energy Rev, 2021, 152: 111615.

    [5] [5] BAETENS R, JELLE B P, GUSTAVSEN A. Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: a state-of-the-art review[J]. Sol Energy Mater Sol Cells, 2010, 94(2): 87-105.

    [6] [6] ZHOU Y, FAN F, LIU Y P, et al. Unconventional smart windows: materials, structures and designs[J]. Nano Energy, 2021, 90: 106613.

    [7] [7] CUI Y Y, KE Y J, LIU C, et al. Thermochromic VO2 for energy-efficient smart windows[J]. Joule, 2018, 2(9): 1707-1746.

    [8] [8] ZHOU Y, WANG S C, PENG J Q, et al. Liquid thermo-responsive smart window derived from hydrogel[J]. Joule, 2020, 4(11): 2458-2474.

    [9] [9] FRANKE E B, TRIMBLE C L, HALE J S, et al. Infrared switching electrochromic devices based on tungsten oxide[J]. J Appl Phys, 2000, 88(10): 5777-5784.

    [10] [10] ZHAI Y L, LI J H, SHEN S, et al. Recent advances on dual-band electrochromic materials and devices[J]. Adv Funct Mater, 2022, 32(17): 2109848.

    [11] [11] CHEN J, SONG G, CONG S, et al. Resonant-cavity-enhanced electrochromic materials and devices[J]. Adv Mater, 2023: 2300179.

    [12] [12] ZHAO S M, WANG B S, ZHU N, et al. Dual-band electrochromic materials for energy-saving smart windows[J]. Carbon Neutralization, 2023, 2(1): 4-27.

    [13] [13] ZHAO D L, AILI A, ZHAI Y, et al. Radiative sky cooling: fundamental principles, materials, and applications[J]. Appl Phys Rev, 2019, 6(2): 021306.

    [14] [14] ZHAO B, HU M K, AO X Z, et al. Radiative cooling: a review of fundamentals, materials, applications, and prospects[J]. Appl Energy, 2019, 236: 489-513.

    [15] [15] LI X Q, XIE W R, SUI C X, et al. Multispectral thermal management designs for net-zero energy buildings[J]. ACS Materials Lett, 2020, 2(12): 1624-1643.

    [16] [16] LEI P Y, WANG J H, GAO Y, et al. An electrochromic nickel phosphate film for large-area smart window with ultra-large optical modulation[J].Nano Micro Lett, 2023, 15(1): 1-13.

    [17] [17] HAO Q, LI W, XU H Y, et al. VO2/TiN plasmonic thermochromic smart coatings for room-temperature applications[J]. Adv Mater, 2018, 30(10): 1705421.

    [18] [18] LI M Y, LIU D Q, CHENG H F, et al. Manipulating metals for adaptive thermal camouflage[J]. Sci Adv, 2020, 6(22): eaba3494.

    [19] [19] GARCIA G, BUONSANTI R, RUNNERSTROM E L, et al. Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals[J]. Nano Lett, 2011, 11(10): 4415-4420.

    [20] [20] HENDAOUI A, MOND N, CHAKER M, et al. Highly tunable-emittance radiator based on semiconductor-metal transition of VO2 thin films[J]. Appl Phys Lett, 2013, 102(6): 061107.

    [21] [21] LI X H, LIU C, FENG S P, et al. Broadband light management with thermochromic hydrogel microparticles for smart windows[J]. Joule, 2019, 3(1): 290-302.

    [22] [22] LLORDS A, GARCIA G, GAZQUEZ J, et al. Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites[J]. Nature, 2013, 500(7462): 323-326.

    [23] [23] KIM J, ONG G K, WANG Y, et al. Nanocomposite architecture for rapid, spectrally-selective electrochromic modulation of solar transmittance[J]. Nano Lett, 2015, 15(8): 5574-5579.

    [24] [24] HUANG Y, WANG B S, BAI X J, et al. 3D pine-needle-like W18O49/TiO2 heterostructures as dual-band electrochromic materials with ultrafast response and excellent stability[J]. Adv Optical Mater, 2022, 10(7): 2102399.

    [25] [25] ZHANG S L, LI Y, ZHANG T R, et al. Dual-band electrochromic devices with a transparent conductive capacitive charge-balancing anode[J]. ACS Appl Mater Interfaces, 2019, 11(51): 48062-48070.

    [26] [26] GU H X, GUO C S, ZHANG S H, et al. Highly efficient, near-infrared and visible light modulated electrochromic devices based on polyoxometalates and W18O49 nanowires[J]. ACS Nano, 2018, 12(1): 559-567.

    [27] [27] WANG Z, ZHANG Q Z, CONG S, et al. Using intrinsic intracrystalline tunnels for near-infrared and visible-light selective electrochromic modulation[J]. Adv Optical Mater, 2017, 5(11): 1700194.

    [28] [28] LIANG Y, CAO S, GUO J Q, et al. Dual-band electrochromic smart window based on single-component nanocrystals[J]. ACS Appl Electron Mater, 2022, 4(11): 5109-5118.

    [29] [29] CAO S, ZHANG S L, ZHANG T R, et al. Fluoride-assisted synthesis of plasmonic colloidal Ta-doped TiO2 nanocrystals for near-infrared and visible-light selective electrochromic modulation[J]. Chem Mater, 2018, 30(14): 4838-4846.

    [30] [30] ZHANG S, CAO S, ZHANG T, et al. Plasmonic oxygen-deficient TiO2-x nanocrystals for dual-band electrochromic smart windows with efficient energy recycling[J]. Adv Mater, 2020, 32(43): e2004686.

    [31] [31] GIANNUZZI R, SCARFIELLO R, SIBILLANO T, et al. From capacitance-controlled to diffusion-controlled electrochromism in one-dimensional shape-tailored tungsten oxide nanocrystals[J]. Nano Energy, 2017, 41: 634-645.

    [32] [32] KIM J, SHIN D, SON M, et al. High optical contrast of quartet dual-band electrochromic device for energy-efficient smart window[J]. ACS Appl Mater Interfaces, 2023, 15(10): 13249-13257.

    [33] [33] ZHANG S L, CAO S, ZHANG T R, et al. Al3+ intercalation/de-intercalation-enabled dual-band electrochromic smart windows with a high optical modulation, quick response and long cycle life[J]. Energy Environ Sci, 2018, 11(10): 2884-2892.

    [34] [34] ZHANG S L, CAO S, ZHANG T R, et al. Monoclinic oxygen-deficient tungsten oxide nanowires for dynamic and independent control of near-infrared and visible light transmittance[J]. Mater Horiz, 2018, 5(2): 291-297.

    [35] [35] MANDAL J, DU S C, DONTIGNY M, et al. Li4Ti5O12: a visible-to-infrared broadband electrochromic material for optical and thermal management[J]. Adv Funct Mater, 2018, 28(36): 1802180.

    [36] [36] BAI T, LI W Z, FU G X, et al. Dual-band electrochromic optical modulation improved by a precise control of lithium content in Li4+xTi5O12[J]. ACS Appl Mater Interfaces, 2022, 14(46): 52193-52203.

    [37] [37] LU N P, ZHANG P F, ZHANG Q H, et al. Electric-field control of tri-state phase transformation with a selective dual-ion switch[J]. Nature, 2017, 546(7656): 124-128.

    [38] [38] LEE SANG jin, CHOI D S, KANG S H, et al. VO2/WO3-based hybrid smart windows with thermochromic and electrochromic properties[J]. ACS Sustainable Chem Eng, 2019, 7(7): 7111-7117.

    [39] [39] JIA H X, CAO X, SHAO Z W, et al. Dual-response and Li+-insertion induced phase transition of VO2-based smart windows for selective visible and near-infrared light transmittance modulation[J]. Sol Energy Mater Sol Cells, 2019, 200: 110045.

    [40] [40] JIA H X, JI X W, SHAO Z W, et al. Li+/Al3+ composite solid electrolyte based electro-thermal dual responsive devices with optimized optical contrast and cycle durability[J]. Adv Opti Mater, 2022, 10(11): 2200106.

    [41] [41] ZHAO S W, SHAO Z W, HUANG A B, et al. Dynamic full-color tunability of high-performance smart windows utilizing absorption-emission effect[J]. Nano Energy, 2021, 89: 106297.

    [42] [42] LI X, CAO C C, LIU C, et al. Self-rolling of vanadium dioxide nanomembranes for enhanced multi-level solar modulation[J]. Nat Commun, 2022, 13: 7819.

    [43] [43] WANG S C, JIANG T Y, MENG Y, et al. Scalable thermochromic smart windows with passive radiative cooling regulation[J]. Science, 2021, 374(6574): 1501-1504.

    [44] [44] WANG J Y, TAN G, YANG R G, et al. Materials, structures, and devices for dynamic radiative cooling[J]. Cell Rep Phys Sci, 2022, 3(12): 101198.

    [45] [45] WEI H, GU J X, REN F F, et al. Smart materials for dynamic thermal radiation regulation[J]. Small, 2021, 17(35): 2100446.

    [46] [46] WANG N, DUCHAMP M, DUNIN-BORKOWSKI R E, et al. Terbium-doped VO2 thin films: reduced phase transition temperature and largely enhanced luminous transmittance[J]. Langmuir, 2016, 32(3): 759-764.

    [47] [47] WANG N, LIU S Y, ZENG X T, et al. Mg/W-codoped vanadium dioxide thin films with enhanced visible transmittance and low phase transition temperature[J]. J Mater Chem C, 2015, 3(26): 6771-6777.

    [48] [48] WHITTAKER L, PATRIDGE C J, BANERJEE S. Microscopic and nanoscale perspective of the metal-insulator phase transitions of VO2: some new twists to an old tale[J]. J Phys Chem Lett, 2011, 2(7): 745-758.

    [49] [49] ONO M, CHEN K F, LI W, et al. Self-adaptive radiative cooling based on phase change materials[J]. Opt Express, OE, 2018, 26(18): A777-A787.

    [50] [50] KE Y J, LI Y B, WU L C, et al. On-demand solar and thermal radiation management based on switchable interwoven surfaces[J]. ACS Energy Lett, 2022, 7(5): 1758-1763.

    [51] [51] WANG S C, ZHOU Y, JIANG T Y, et al. Thermochromic smart windows with highly regulated radiative cooling and solar transmission[J]. Nano Energy, 2021, 89: 106440.

    [52] [52] YIN H Z, ZHOU X S, ZHOU Z G, et al. Switchable kirigami structures as window envelopes for energy-efficient buildings[J]. Research, 2023, 6.

    [53] [53] LI T, ZHAI Y, HE S M, et al. A radiative cooling structural material[J]. Science, 2019, 364(6442): 760-763.

    [54] [54] ZHOU Z G, FANG Y S, WANG X, et al. Synergistic modulation of solar and thermal radiation in dynamic energy-efficient windows[J]. Nano Energy, 2022, 93: 106865.

    [55] [55] ROSALES B A, KIM J, WHEELER V M, et al. Thermochromic halide perovksite windows with ideal transition temperatures[J]. Adv Energy Mater, 2023, 13: 2203331.

    [56] [56] RAO Y F, DAI J Y, SUI C X, et al. Ultra-wideband transparent conductive electrode for electrochromic synergistic solar and radiative heat management[J]. ACS Energy Lett, 2021, 6(11): 3906-3915.

    [57] [57] LIN C J, HUR J, CHAO C Y H, et al. All-weather thermochromic windows for synchronous solar and thermal radiation regulation[J]. Sci Adv, 2022, 8(17): eabn7359.

    [58] [58] BAI Z Y, LI R, PING L, et al. Photo-induced self-reduction enabling ultralow threshold voltage energy-conservation electrochromism[J]. Chem Eng J, 2023, 452: 139645.

    [59] [59] CAO J, ERTEKIN E, SRINIVASAN V, et al. Strain engineering and one-dimensional organization of metal-insulator domains in single-crystal vanadium dioxide beams[J]. Nat Nanotechnol, 2009, 4(11): 732-737.

    [60] [60] LI Z S, ZHAO S W, SHAO Z W, et al. Deterioration mechanism of vanadium dioxide smart coatings during natural aging: Uncovering the role of water[J]. Chem Eng J, 2022, 447: 137556.

    [61] [61] WU C, SHAO Z W, ZHAI W B, et al. Niobium tungsten oxides for electrochromic devices with long-term stability[J]. ACS Nano, 2022, 16(2): 2621-2628.

    [62] [62] HUANG S Y, LIU Y N, JAFARI M, et al. Highly stable Ag-Au core-shell nanowire network for ITO-free flexible organic electrochromic device[J]. Adv Funct Mater, 2021, 31(14): 2010022.

    [63] [63] LI Z S, CAO C C, LI M, et al. Gradient variation oxygen-content vanadium-oxygen composite films with enhanced crystallinity and excellent durability for smart windows[J]. ACS Appl Mater Interfaces, 2023, 15(7): 9401-9411.

    [64] [64] VU T D, XIE H, WANG S C, et al. Durable vanadium dioxide with 33-year service life for smart windows applications[J]. Mater Today Energy, 2022, 26: 100978.

    [65] [65] KIM S, SHANG W J, MOON S, et al. High-performance transparent radiative cooler designed by quantum computing[J]. ACS Energy Lett, 2022, 7(12): 4134-4141.

    Tools

    Get Citation

    Copy Citation Text

    LI Yiyi, LI Shangjing, HU Bin. Recent Development on Energy-Efficient Glazing for Multi-Band Modulation[J]. Journal of the Chinese Ceramic Society, 2023, 51(9): 2492

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 30, 2023

    Accepted: --

    Published Online: Oct. 7, 2023

    The Author Email: Yiyi LI (liyiyi@hust.edu.cn)

    DOI:

    CSTR:32186.14.

    Topics