Laser & Optoelectronics Progress, Volume. 53, Issue 7, 70604(2016)

Theoretical Study on SBS Effect Suppression of Gradient Doping Gain Fibers

Zhou Zichao*, Wang Xiaolin, Su Rongtao, Zhang Hanwei, Zhou Pu, and Xu Xiaojun
Author Affiliations
  • [in Chinese]
  • show less
    References(28)

    [1] [1] Jeong Y, Nilsson J, Sahu J K, et al.. Power scaling of single-frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(3): 546-551.

    [2] [2] Liem A, Limpert J, Zellmer H, et al.. 100-W single-frequency master-oscillator fiber power amplifier[J]. Optics Letters, 2003, 28(17): 1537-1539.

    [3] [3] Shi W, Fang Q, Zhu X, et al.. Fiber lasers and their applications[J]. Applied Optics, 2014, 53(28): 6554-6568.

    [4] [4] Jeong Y, Nilsson J, Sahu J K, et al.. Single-frequency, single-mode, plane-polarized ytterbium-doped fiber master oscillator power amplifier source with 264 W of output power[J]. Optics Letters, 2005, 30(5): 459-461.

    [5] [5] Jeong Y, Sahu J K, Soh D B S, et al.. High-power tunable single-frequency single-mode erbium: Ytterbium codoped large-core fiber master-oscillator power amplifier source[J]. Optics Letters, 2005, 30(22): 2997-2999.

    [6] [6] Pulford B, Ehrenreich T, Holten R, et al.. 400-W near diffraction-limited single-frequency all-solid photonic bandgap fiber amplifier[J]. Optics Letters, 2015, 40(10): 2297-2300.

    [7] [7] Kovalev V I, Harrison R G. Suppression of stimulated Brillouin scattering in high-power single-frequency fiber amplifiers[J]. Optics Letters, 2006, 31(2): 161-163.

    [8] [8] Wang X L, Zhou P, Xiao H, et al.. 310 W single-frequency all-fiber laser in master oscillator power amplification configuration[J]. Laser Physics Letters, 2012, 9(8): 591-595.

    [9] [9] Ran Yang, Wang Xiaolin, Lü Haibin, et al.. Novel suppression method study for stimulated Brillouin scattering by simultaneous phase and intensity modulation in fiber amplifiers[J]. Chinese J Lasers, 2015,42(8): 0805003.

    [10] [10] Ran Yang, Wang Xiaolin,Su Rongtao, et al.. Research progress of stimulated Brillouin scattering suppression in narrow linewidth fiber amplifiers[J]. Laser & Optoelectronics Progress, 2015, 52(4): 040003.

    [11] [11] Stiller B, Min W L, Delqué M, et al.. Suppression of SBS in a photonic crystal fiber with periodically-varied core diameter[C].Optical Fiber Communication Conference, 2011: OMO5.

    [12] [12] Poletti F, Furusawa K, Yusoff Z, et al.. Nonlinear tapered holey fibers with high stimulated Brillouin scattering threshold and controlled dispersion[J]. Journal of the Optical Society of America B, 2007, 24(9): 2185-2194.

    [13] [13] Chen Zilun, Hou Jing, Jiang Zongfu. Theoretical study of thermal effect in Yb-doped double-clad high power fiber laser[J]. Journal of Lasers, 2007, 31(5): 544-547.

    [14] [14] Lei Z, Shuzhen C, Chi L, et al.. 170 W, single-frequency, single-mode, linearly-polarized, Yb-doped all-fiber amplifier[J]. Optics Express, 2013, 21(5): 5456-5462.

    [15] [15] Liu A. Suppressing stimulated Brillouin scattering in fiber amplifiers using nonuniform fiber and temperature gradient[J]. Optics Express, 2007, 15(3): 977-984.

    [16] [16] Laversenne L, Goutaudier C, Guyot Y, et al.. Growth of rare earth (RE) doped concentration gradient crystal fibers and analysis of dynamical processes of laser resonant transitions in RE-doped Y2O3(RE=Yb3+ , Er3+ , Ho3+ )[J]. Journal of Alloys & Compounds, 2002, 341(s1-s2): 214-219.

    [17] [17] Boulon G, Laversenne L, Goutaudier C, et al.. Radiative and non-radiative energy transfers in Yb3+-doped sesquioxide and garnet laser crystals from a combinatorial approach based on gradient concentration fibers[J]. Journal of Luminescence, 2003, 102-103: 417-425.

    [18] [18] Tammela S, Sderlund M, Koponen J, et al.. The potential of direct nanoparticle deposition for the next generation of optical fibers[C]. SPIE, 2006, 6116: 61160G.

    [20] [20] Kelson I, Hardy A. Strongly pumped fiber lasers[J]. IEEE Journal of Quantum Electronics, 1998, 34(9): 1570-1577.

    [21] [21] Kelson I, Hardy A. Optimization of strongly pumped fiber lasers[J]. Journal of Lightwave Technology, 1999, 17(5): 891-897.

    [23] [23] Vazquez-Zuniga L A, Chung S, Jeong Y. Thermal characteristics of an ytterbium-doped fiber amplifier operating at 1060 and 1080 nm[J]. Japanese Journal of Applied Physics, 2010, 49(2): 22502-22505.

    [25] [25] Brown D C, Hoffman H J. Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers[J]. IEEE Journal of Quantum Electronics, 2001, 37(2): 207-217.

    [26] [26] Smith A V, Smith J J. Steady-periodic method for modeling mode instability in fiber amplifiers[J]. Optics Express, 2013, 21(3): 2606-2623.

    [27] [27] Hansryd J, Dross F, Westlund M, et al.. Increase of the SBS threshold in a short highly nonlinear fiber by applying a temperature distribution[J]. Journal of Lightwave Technology, 2001, 19(11): 1691-1697.

    [28] [28] Chen Zilun. The study of mutual injection locking method in fiber lasers and post-processing techniques of the PCFs[D]. Changsha: National University of Defense Technology, 2009.

    Tools

    Get Citation

    Copy Citation Text

    Zhou Zichao, Wang Xiaolin, Su Rongtao, Zhang Hanwei, Zhou Pu, Xu Xiaojun. Theoretical Study on SBS Effect Suppression of Gradient Doping Gain Fibers[J]. Laser & Optoelectronics Progress, 2016, 53(7): 70604

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Fiber Optics and Optical Communications

    Received: Mar. 9, 2016

    Accepted: --

    Published Online: Jul. 8, 2016

    The Author Email: Zichao Zhou (zhouzichao@nudt.edu.cn)

    DOI:10.3788/lop53.070604

    Topics