Optics and Precision Engineering, Volume. 32, Issue 22, 3348(2024)

Spatial-spectral reweighted sparse multi-layer nonnegative matrix factorization for hyperspectral image unmixing

Jiming TANG1... Wenxing BAO1,*, Bingbing LEI1,*, Wei FENG2 and Kewen QU1 |Show fewer author(s)
Author Affiliations
  • 1School of Computer Science and Engineering, North Minzu University, Yinchuan75002, China
  • 2School of Electronic Engineering, Xidian University, Xi'an710071, China
  • show less
    References(40)

    [1] J J WEI, X F WANG. An overview on linear unmixing of hyperspectral data. Mathematical Problems in Engineering, 2020, 3735403(2020).

    [2] M J KHAN, H S KHAN, A YOUSAF et al. Modern trends in hyperspectral image analysis: a review. IEEE Access, 6, 14118-14129(2018).

    [3] R L PU. Mapping tree species using advanced remote sensing technologies: a state-of-the-art review and perspective. Journal of Remote Sensing, 2021, 9812624(2021).

    [4] A R HUETE, T MIURA, X GAO. Land cover conversion and degradation analyses through coupled soil-plant biophysical parameters derived from hyperspectral EO-1 Hyperion. IEEE Transactions on Geoscience and Remote Sensing, 41, 1268-1276(2003).

    [5] C GENDRIN, Y ROGGO, C COLLET. Pharmaceutical applications of vibrational chemical imaging and chemometrics: a review. Journal of Pharmaceutical and Biomedical Analysis, 48, 533-553(2008).

    [6] W HE, H Y ZHANG, L P ZHANG. Sparsity-regularized robust non-negative matrix factorization for hyperspectral unmixing. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9, 4267-4279(2016).

    [7] A F GOETZ, G VANE, J E SOLOMON et al. Imaging spectrometry for Earth remote sensing. Science, 228, 1147-1153(1985).

    [8] P GHAMISI, N YOKOYA, J LI et al. Advances in hyperspectral image and signal processing: a comprehensive overview of the state of the art. IEEE Geoscience and Remote Sensing Magazine, 5, 37-78(2017).

    [9] J M BIOUCAS-DIAS, A PLAZA. An overview on hyperspectral unmixing: geometrical, statistical, and sparse regression based approaches, 1135-1138(2011).

    [10] A BEKIT, C I CHANG, B LAMPE et al. N-FINDER for finding endmembers in compressively sensed band domain. IEEE Transactions on Geoscience and Remote Sensing, 58, 1087-1101(2020).

    [11] M E WINTER. Comparison of approaches for determining end-members in hyperspectral data, 305-313(2000).

    [12] J LI, A AGATHOS, D ZAHARIE et al. Minimum volume simplex analysis: a fast algorithm for linear hyperspectral unmixing. IEEE Transactions on Geoscience and Remote Sensing, 53, 5067-5082(2015).

    [13] J M BIOUCAS-DIAS. A variable splitting augmented lagrangian approach to linear spectral unmixing, 1-4(2009).

    [14] Z W SHI, W TANG, Z N DUREN et al. Subspace matching pursuit for sparse unmixing of hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 52, 3256-3274(2014).

    [15] R WANG, H C LI, A PIZURICA et al. Hyperspectral unmixing using double reweighted sparse regression and total variation. IEEE Geoscience and Remote Sensing Letters, 14, 1146-1150(2017).

    [16] S Q ZHANG, J LI, H C LI et al. Spectral–spatial weighted sparse regression for hyperspectral image unmixing. IEEE Transactions on Geoscience and Remote Sensing, 56, 3265-3276(2018).

    [17] J S BHATT, M V JOSHI. Deep learning in hyperspectral unmixing: a review, 2189-2192(2020).

    [18] Q W JIN, Y MA, F FAN et al. Adversarial autoencoder network for hyperspectral unmixing. IEEE Transactions on Neural Networks and Learning Systems, 34, 4555-4569(2023).

    [19] L R GAO, Z HAN, D F HONG et al. CyCU-net: cycle-consistency unmixing network by learning cascaded autoencoders. IEEE Transactions on Geoscience and Remote Sensing, 60, 5503914(2022).

    [20] S JIA, Y T QIAN. Spectral and spatial complexity-based hyperspectral unmixing. IEEE Transactions on Geoscience and Remote Sensing, 45, 3867-3879(2007).

    [21] W H WANG, Y T QIAN, Y Y TANG. Hypergraph-regularized sparse NMF for hyperspectral unmixing. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9, 681-694(2016).

    [22] X R FENG, H C LI, J LI et al. Hyperspectral unmixing using sparsity-constrained deep nonnegative matrix factorization with total variation. IEEE Transactions on Geoscience and Remote Sensing, 56, 6245-6257(2018).

    [23] C I CHANG, Q DU. Estimation of number of spectrally distinct signal sources in hyperspectral imagery. IEEE Transactions on Geoscience and Remote Sensing, 42, 608-619(2004).

    [24] D D LEE, H S SEUNG. Learning the parts of objects by non-negative matrix factorization. Nature, 401, 788-791(1999).

    [25] Y T QIAN, S JIA, J ZHOU et al. Hyperspectral unmixing via $L1/2$ sparsity-constrained nonnegative matrix factorization. IEEE Transactions on Geoscience and Remote Sensing, 49, 4282-4297(2011).

    [26] R RAJABI, H GHASSEMIAN. Spectral unmixing of hyperspectral imagery using multilayer NMF. IEEE Geoscience and Remote Sensing Letters, 12, 38-42(2015).

    [27] R RAJABI, H GHASSEMIAN. Multilayer structured nmf for spectral unmixing of hyperspectral images, 1-4(2014).

    [28] L DONG, Y YUAN, X LUXS. Spectral-spatial joint sparse NMF for hyperspectral unmixing. IEEE Transactions on Geoscience and Remote Sensing, 59, 2391-2402(2021).

    [29] R WANG, H C LI, W Z LIAO et al. Double Reweighted Sparse Regression for Hyperspectral Unmixing, 6986-6989(2016).

    [30] L S YANG, J H PENG, H W SU et al. Combined nonlocal spatial information and spatial group sparsity in NMF for hyperspectral unmixing. IEEE Geoscience and Remote Sensing Letters, 17, 1767-1771(2020).

    [31] X C LV, W H WANG, H F LIU. Cluster-wise weighted NMF for hyperspectral images unmixing with imbalanced data. Remote Sensing, 13, 268(2021).

    [32] C Z DENG, Y G CHEN, S Q ZHANG et al. Robust dual spatial weighted sparse unmixing for remotely sensed hyperspectral imagery. Remote Sensing, 15, 4056(2023).

    [33] M D IORDACHE, J M BIOUCAS-DIAS, A PLAZA. Sparse unmixing of hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 49, 2014-2039(2011).

    [34] J T PENG, W W SUN, H C LI et al. Low-Rank and Sparse Representation for Hyperspectral Image Processing: a review. IEEE Geoscience and Remote Sensing Magazine, 10, 10-43(2022).

    [35] D C HEINZ. Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery. IEEE Transactions on Geoscience and Remote Sensing, 39, 529-545(2001).

    [36] J M P NASCIMENTO, J M B DIAS. Vertex component analysis: a fast algorithm to unmix hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 43, 898-910(2005).

    [37] F ZHU. Spectral unmixing datasets with ground truths(2017).

    [38] Z H GUO, T WITTMAN, S OSHER. L1 unmixing and its application to hyperspectral image enhancement. Hyperspectral(2009).

    [40] X H WANG, M ZHAO, J CHEN. Hyperspectral unmixing via plug-and-play priors, 1063-1067(2020).

    Tools

    Get Citation

    Copy Citation Text

    Jiming TANG, Wenxing BAO, Bingbing LEI, Wei FENG, Kewen QU. Spatial-spectral reweighted sparse multi-layer nonnegative matrix factorization for hyperspectral image unmixing[J]. Optics and Precision Engineering, 2024, 32(22): 3348

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jun. 11, 2024

    Accepted: --

    Published Online: Mar. 10, 2025

    The Author Email: BAO Wenxing (bwx71@163. com), LEI Bingbing (x_generation@126.com)

    DOI:10.37188/OPE.20243222.3348

    Topics