Matter and Radiation at Extremes, Volume. 8, Issue 2, 025902(2023)

Spectrum-tailored random fiber laser towards ICF laser facility

Mengqiu Fan1,2, Shengtao Lin3, Ke Yao1, Yifei Qi3, Jiaojiao Zhang3, Junwen Zheng1, Pan Wang3, Longqun Ni3, Xingyu Bao3, Dandan Zhou1, Bo Zhang1, Kaibo Xiao1, Handing Xia1, Rui Zhang1, Ping Li1, Wanguo Zheng1, and Zinan Wang3、a)
Author Affiliations
  • 1Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, China
  • 2Graduate School of China Academy of Engineering Physics, Beijing 100193, China
  • 3Key Laboratory of Optical Fiber Sensing and Communications, University of Electronic Science and Technology of China, Chengdu 611731, China
  • show less
    References(44)

    [1] D. S.Montgomery. Two decades of progress in understanding and control of laser plasma instabilities in indirect drive inertial fusion. Phys. Plasmas, 23, 055601(2016).

    [2] C.Labaune. Incoherent light on the road to ignition. Nat. Phys., 3, 680-682(2007).

    [3] R. L.Berger, L.Divol, S.Dixit, M.Dorr, D. H.Froula, S. H.Glenzer, B. A.Hammel, C.Haynam, J. A.Hittinger, J. P.Holder, O. S.Jones, D. H.Kalantar, O. L.Landen, A. B.Langdon, S.Langer, B. J.MacGowan, A. J.Mackinnon, N.Meezan, E. I.Moses, C.Niemann, C. H.Still, L. J.Suter, R. J.Wallace, E. A.Williams, B. K. F.Young. Experiments and multiscale simulations of laser propagation through ignition-scale plasmas. Nat. Phys., 3, 716-719(2007).

    [4] J.Edwards, O.Landen, J.Lindl, E.Moses. Review of the National Ignition Campaign 2009-2012. Phys. Plasmas, 21, 020501(2014).

    [5] C.Gouedard, G.Thiell, D.Veron. Optical smoothing of the high power PHEBUS Nd-glass laser using the multimode optical fiber technique. Opt. Commun., 97, 259-271(1993).

    [6] R.Eckardt, R. H.Lehmberg, C. K.Manka, S.Obenschain, C. J.Pawley, M. S.Pronko. Efficient second harmonic conversion of broad-band high-peak-power Nd:glass laser radiation using large-aperture KDP crystals in quadrature. IEEE J. Quantum Electron., 26, 337-347(1990).

    [7] T.Kanabe, N.Miyanaga, S.Nakai, H.Nakano, M.Nakatsuka, K.Tsubakimoto. Partially coherent light sources for ICF experiment. Proc. SPIE, 1870, 151-162(1993).

    [8] S. I.Fedotov, L. P.Feoktistov, M. V.Osipov, A. N.Starodub. Lasers for ICF with a controllable function of mutual coherence of radiation. J. Russ. Laser Res., 25, 79-92(2004).

    [9] M.Bowers, S.Burkhart, S.Cohen, G.Erbert, J.Heebner, M.Hermann, D.Jedlovec. The injection laser system on the National Ignition Facility. Proc. SPIE, 6451, 64511M(2007).

    [10] N.Beck, H.Co?c, J.-F.Gleyze, A.Jolly, D.Penninckx, L.Videau. Fiber lasers integration for LMJ. C. R. Phys., 7, 198-212(2006).

    [11] L.Feng, C.Guang-Hui, L.Hong-Huan, W.Jian-Jun, T.Jun, D.Lei, L.Ming-Zhong, D.Qing-Hua, D.Yi-Fang, L.Yi-Ming, S.Zhan. Integrated all fiber optical pulse generation system for laser fusion driver. Acta Phys. Sin., 57, 1771(2008).

    [13] X.Chen, Y.Cui, W.Feng, S.Fu, Y.Gao, Y.Hua, L.Ji, F.Li, X.Li, D.Liu, J.Liu, J.Liu, W.Ma, W.Pei, D.Pengyuan, D.Rao, C.Shan, H.Shi, Z.Sui, X.Sun, T.Wang, L.Xia, T.Zhang, X.Zhao, J.Zhu. High-power, low-coherence laser driver facility. Opt. Lett., 45, 6839(2020).

    [14] Y.Cui, W.Feng, Y.Gao, L.Ji, F.Li, X.Li, D.Liu, J.Liu, J.Liu, W.Ma, D.Rao, C.Shan, H.Shi, Z.Sui, X.Zhao. 1 μJ nanosecond low-coherent laser source with precise temporal shaping and spectral control. Opt. Laser Technol., 122, 105850(2020).

    [15] X.Chen, Y.Cui, P.Du, W.Feng, Y.Gao, L.Ji, F.Li, X.Li, D.Liu, J.Liu, J.Liu, W.Ma, D.Rao, H.Shi, Z.Sui, X.Sun, T.Wang, L.Xia, X.Zhao. High-efficiency second-harmonic generation of low-temporal-coherent light pulse. Opt. Lett., 44, 4359(2019).

    [16] Y.Cui, W.Feng, Y.Gao, L.Ji, F.Li, X.Li, D.Liu, J.Liu, J.Liu, W.Ma, D.Rao, H.Shi, Z.Sui, T.Wang, L.Xia, X.Zhao. High-energy low-temporal-coherence instantaneous broadband pulse system. Opt. Lett., 44, 2859(2019).

    [17] C.Dorrer, E. M.Hill, J. D.Zuegel. High-energy parametric amplification of spectrally incoherent broadband pulses. Opt. Express, 28, 451(2020).

    [18] T.Borger, C.Dorrer, S.Herman, E. M.Hill, M.Spilatro. Broadband sum-frequency generation of spectrally incoherent pulses. Opt. Express, 29, 16135(2021).

    [19] C.Dorrer, M.Spilatro. Spectral and temporal shaping of spectrally incoherent pulses in the infrared and ultraviolet. Opt. Express, 30, 4942(2022).

    [20] J. W.Bates, R. K.Follett, R. H.Lehmberg, J. F.Myatt, S. P.Obenschain, J. G.Shaw, J. L.Weaver. Mitigation of cross-beam energy transfer in inertial-confinement-fusion plasmas with enhanced laser bandwidth. Phys. Rev. E, 97, 061202(2018).

    [21] M.Chen, Z.Sheng, S.Weng, Y.Zhao, J.Zheng, H.Zhuo. Stimulated Raman scattering excited by incoherent light in plasma. Matter Radiat. Extremes, 2, 190-196(2017).

    [22] J. D.Ania-Casta?ón, S. A.Babin, D. V.Churkin, A. E.El-Taher, P.Harper, S. I.Kablukov, V.Karalekas, E. V.Podivilov, S. K.Turitsyn. Random distributed feedback fibre laser. Nat. Photonics, 4, 231-235(2010).

    [23] S. A.Babin, D. V.Churkin, E. V.Podivilov, Y.Rao, S.Sugavanam, S. K.Turitsyn, I. D.Vatnik, Z.Wang. Recent advances in fundamentals and applications of random fiber lasers. Adv. Opt. Photonics, 7, 516(2015).

    [24] S. A.Babin, D. V.Churkin, M.Nikulin, E. V.Podivilov, S. K.Turitsyn, I. D.Vatnik. Random distributed feedback fibre lasers. Phys. Rep., 542, 133-193(2014).

    [25] M.Fan, X.Jia, Y.Rao, Z.Wang, H.Wu, L.Zhang, W.Zhang. High power random fiber laser with short cavity length: Theoretical and experimental investigations. IEEE J. Sel. Top. Quantum Electron., 21, 10-15(2015).

    [26] L.Huang, Y.Rao, J.Song, X.Wang, Z.Wang, H.Wu, J.Wu, J.Xu, X.Xu, H.Zhang, P.Zhou. Quasi-kilowatt random fiber laser. Opt. Lett., 44, 2613(2019).

    [27] B.Han, S.Lin, Y.Qi, Y.Rao, Z.Wang, H.Wu. Wideband remote-sensing based on random fiber laser. J. Lightwave Technol., 40, 3104-3110(2022).

    [28] H.Liang, H.Liu, W.Wang, Z.Wang, H.Wu. Tailoring the efficiency and spectrum of a green random laser generated by frequency doubling of random fiber lasers. Opt. Express, 29, 21521(2021).

    [29] S. A.Babin, A. E.El-Taher, P.Harper, E. V.Podivilov, S. K.Turitsyn. Tunable random fiber laser. Phys. Rev. A, 84, 021805(2011).

    [30] S.Cui, Y.Feng, H.Jiang, W.Pan, X.Yang, L.Zhang. Nearly-octave wavelength tuning of a continuous wave fiber laser. Sci. Rep., 7, 42611(2017).

    [31] J.Chen, J.Leng, J.Wu, H.Xiao, J.Xu, J.Ye, H.Zhang, P.Zhou. Tandem pumping architecture enabled high power random fiber laser with near-diffraction-limited beam quality. Sci. China: Technol. Sci., 62, 80-86(2019).

    [32] W.Chen, Y.Li, F.Pang, T.Wang, H.Xie, L.Zhan, L.Zhang. Towards optimal conversion efficiency of Brillouin random fiber lasers in a half-open linear cavity. Opt. Express, 30, 32097(2022).

    [33] S.Du, M.Gong, D.Li, T.Qi, Q.Xiao, P.Yan. 10 kW fiber amplifier seeded by random fiber laser with suppression of spectral broadening and SRS. IEEE Photonics Technol. Lett., 34, 721-724(2022).

    [34] H.Chen, S.Chen, W.Chen, Y.Chen, D.He, J.Hu, L.Hu, S.Li, T.Meng, J.Tang, B.Wang, X.Wang, L.Wen, Y.Xu. Research and development of neodymium phosphate laser glass for high power laser application. Opt. Mater., 63, 213-220(2017).

    [35] B.Han, H.Liang, Z.Wang, H.Wu. Statistical properties of Er/Yb co-doped random Rayleigh feedback fiber laser. Chin. Opt. Lett., 19, 021402(2021).

    [36] A. E.Bednyakova, M. P.Fedoruk, A. A.Fotiadi, A. S.Kurkov, A. I.Latkin, E.Sholokhov, S. K.Turitsyn. Modeling of CW Yb-doped fiber lasers with highly nonlinear cavity dynamics. Opt. Express, 19, 8394(2011).

    [37] D. V.Churkin, S. V.Smirnov. Modeling of spectral and statistical properties of a random distributed feedback fiber laser. Opt. Express, 21, 21236(2013).

    [38] Y.Chen, W.Dai, Z.Dang, X.Deng, B.Feng, L.Guo, D.Hu, H.Jia, F.Jing, D.Lin, L.Liu, Z.Peng, F.Wang, F.Wang, X.Wei, Y.Xiang, X.Xie, D.Xu, X.Yuan, R.Zhang, X.Zhang, W.Zheng, W.Zhou, Q.Zhu. Laser performance upgrade for precise ICF experiment in SG-III laser facility. Matter Radiat. Extremes, 2, 243-255(2017).

    [39] M.Fan, W.Sun, Z.Wang, H.Wu, L.Zhang. Low-threshold, high-efficiency random fiber laser with linear output. IEEE Photonics Technol. Lett., 27, 319-322(2015).

    [40] Z.Chen, C.Fan, X.Fu, S.Gao, J.Tang, X.Xie, K.Yao. Multi-beam large fundamental mode neodymium glass regenerative amplifier with uniform performance. Front. Phys., 10, 923402(2022).

    [41] S.Lin, Y.Qi, Y.Rao, Z.Wang. Long-distance random fiber laser sensing system with ultra-fast signal demodulation, Th2A.13(2022).

    [42] J.Lindl. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas, 2, 3933-4024(1995).

    [43] X.Chen, Y.Cui, P.Du, W.Feng, S.Fu, Y.Gao, Y.Hua, X.Huang, L.Ji, F.Li, X.Li, D.Liu, J.Liu, J.Liu, W.Ma, W.Pei, D.Rao, C.Shan, H.Shi, Z.Sui, X.Sun, T.Wang, L.Xia, T.Zhang, X.Zhao, J.Zhu. Development of low-coherence high-power laser drivers for inertial confinement fusion. Matter Radiat. Extremes, 5, 065201(2020).

    [44] B.Afeyan, S.Hüller. Simulations of drastically reduced SBS with laser pulses composed of a Spike Train of Uneven Duration and Delay (STUD pulses). EPJ Web Conf., 59, 05010(2013).

    Tools

    Get Citation

    Copy Citation Text

    Mengqiu Fan, Shengtao Lin, Ke Yao, Yifei Qi, Jiaojiao Zhang, Junwen Zheng, Pan Wang, Longqun Ni, Xingyu Bao, Dandan Zhou, Bo Zhang, Kaibo Xiao, Handing Xia, Rui Zhang, Ping Li, Wanguo Zheng, Zinan Wang. Spectrum-tailored random fiber laser towards ICF laser facility[J]. Matter and Radiation at Extremes, 2023, 8(2): 025902

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Inertial Confinement Fusion Physics

    Received: Oct. 5, 2022

    Accepted: Dec. 21, 2022

    Published Online: Apr. 12, 2023

    The Author Email: Wang Zinan (znwang@uestc.edu.cn)

    DOI:10.1063/5.0129434

    Topics