Matter and Radiation at Extremes, Volume. 8, Issue 2, 025902(2023)
Spectrum-tailored random fiber laser towards ICF laser facility
[1] D. S.Montgomery. Two decades of progress in understanding and control of laser plasma instabilities in indirect drive inertial fusion. Phys. Plasmas, 23, 055601(2016).
[2] C.Labaune. Incoherent light on the road to ignition. Nat. Phys., 3, 680-682(2007).
[3] R. L.Berger, L.Divol, S.Dixit, M.Dorr, D. H.Froula, S. H.Glenzer, B. A.Hammel, C.Haynam, J. A.Hittinger, J. P.Holder, O. S.Jones, D. H.Kalantar, O. L.Landen, A. B.Langdon, S.Langer, B. J.MacGowan, A. J.Mackinnon, N.Meezan, E. I.Moses, C.Niemann, C. H.Still, L. J.Suter, R. J.Wallace, E. A.Williams, B. K. F.Young. Experiments and multiscale simulations of laser propagation through ignition-scale plasmas. Nat. Phys., 3, 716-719(2007).
[4] J.Edwards, O.Landen, J.Lindl, E.Moses. Review of the National Ignition Campaign 2009-2012. Phys. Plasmas, 21, 020501(2014).
[5] C.Gouedard, G.Thiell, D.Veron. Optical smoothing of the high power PHEBUS Nd-glass laser using the multimode optical fiber technique. Opt. Commun., 97, 259-271(1993).
[6] R.Eckardt, R. H.Lehmberg, C. K.Manka, S.Obenschain, C. J.Pawley, M. S.Pronko. Efficient second harmonic conversion of broad-band high-peak-power Nd:glass laser radiation using large-aperture KDP crystals in quadrature. IEEE J. Quantum Electron., 26, 337-347(1990).
[7] T.Kanabe, N.Miyanaga, S.Nakai, H.Nakano, M.Nakatsuka, K.Tsubakimoto. Partially coherent light sources for ICF experiment. Proc. SPIE, 1870, 151-162(1993).
[8] S. I.Fedotov, L. P.Feoktistov, M. V.Osipov, A. N.Starodub. Lasers for ICF with a controllable function of mutual coherence of radiation. J. Russ. Laser Res., 25, 79-92(2004).
[9] M.Bowers, S.Burkhart, S.Cohen, G.Erbert, J.Heebner, M.Hermann, D.Jedlovec. The injection laser system on the National Ignition Facility. Proc. SPIE, 6451, 64511M(2007).
[10] N.Beck, H.Co?c, J.-F.Gleyze, A.Jolly, D.Penninckx, L.Videau. Fiber lasers integration for LMJ. C. R. Phys., 7, 198-212(2006).
[11] L.Feng, C.Guang-Hui, L.Hong-Huan, W.Jian-Jun, T.Jun, D.Lei, L.Ming-Zhong, D.Qing-Hua, D.Yi-Fang, L.Yi-Ming, S.Zhan. Integrated all fiber optical pulse generation system for laser fusion driver. Acta Phys. Sin., 57, 1771(2008).
[13] X.Chen, Y.Cui, W.Feng, S.Fu, Y.Gao, Y.Hua, L.Ji, F.Li, X.Li, D.Liu, J.Liu, J.Liu, W.Ma, W.Pei, D.Pengyuan, D.Rao, C.Shan, H.Shi, Z.Sui, X.Sun, T.Wang, L.Xia, T.Zhang, X.Zhao, J.Zhu. High-power, low-coherence laser driver facility. Opt. Lett., 45, 6839(2020).
[14] Y.Cui, W.Feng, Y.Gao, L.Ji, F.Li, X.Li, D.Liu, J.Liu, J.Liu, W.Ma, D.Rao, C.Shan, H.Shi, Z.Sui, X.Zhao. 1
[15] X.Chen, Y.Cui, P.Du, W.Feng, Y.Gao, L.Ji, F.Li, X.Li, D.Liu, J.Liu, J.Liu, W.Ma, D.Rao, H.Shi, Z.Sui, X.Sun, T.Wang, L.Xia, X.Zhao. High-efficiency second-harmonic generation of low-temporal-coherent light pulse. Opt. Lett., 44, 4359(2019).
[16] Y.Cui, W.Feng, Y.Gao, L.Ji, F.Li, X.Li, D.Liu, J.Liu, J.Liu, W.Ma, D.Rao, H.Shi, Z.Sui, T.Wang, L.Xia, X.Zhao. High-energy low-temporal-coherence instantaneous broadband pulse system. Opt. Lett., 44, 2859(2019).
[17] C.Dorrer, E. M.Hill, J. D.Zuegel. High-energy parametric amplification of spectrally incoherent broadband pulses. Opt. Express, 28, 451(2020).
[18] T.Borger, C.Dorrer, S.Herman, E. M.Hill, M.Spilatro. Broadband sum-frequency generation of spectrally incoherent pulses. Opt. Express, 29, 16135(2021).
[19] C.Dorrer, M.Spilatro. Spectral and temporal shaping of spectrally incoherent pulses in the infrared and ultraviolet. Opt. Express, 30, 4942(2022).
[20] J. W.Bates, R. K.Follett, R. H.Lehmberg, J. F.Myatt, S. P.Obenschain, J. G.Shaw, J. L.Weaver. Mitigation of cross-beam energy transfer in inertial-confinement-fusion plasmas with enhanced laser bandwidth. Phys. Rev. E, 97, 061202(2018).
[21] M.Chen, Z.Sheng, S.Weng, Y.Zhao, J.Zheng, H.Zhuo. Stimulated Raman scattering excited by incoherent light in plasma. Matter Radiat. Extremes, 2, 190-196(2017).
[22] J. D.Ania-Casta?ón, S. A.Babin, D. V.Churkin, A. E.El-Taher, P.Harper, S. I.Kablukov, V.Karalekas, E. V.Podivilov, S. K.Turitsyn. Random distributed feedback fibre laser. Nat. Photonics, 4, 231-235(2010).
[23] S. A.Babin, D. V.Churkin, E. V.Podivilov, Y.Rao, S.Sugavanam, S. K.Turitsyn, I. D.Vatnik, Z.Wang. Recent advances in fundamentals and applications of random fiber lasers. Adv. Opt. Photonics, 7, 516(2015).
[24] S. A.Babin, D. V.Churkin, M.Nikulin, E. V.Podivilov, S. K.Turitsyn, I. D.Vatnik. Random distributed feedback fibre lasers. Phys. Rep., 542, 133-193(2014).
[25] M.Fan, X.Jia, Y.Rao, Z.Wang, H.Wu, L.Zhang, W.Zhang. High power random fiber laser with short cavity length: Theoretical and experimental investigations. IEEE J. Sel. Top. Quantum Electron., 21, 10-15(2015).
[26] L.Huang, Y.Rao, J.Song, X.Wang, Z.Wang, H.Wu, J.Wu, J.Xu, X.Xu, H.Zhang, P.Zhou. Quasi-kilowatt random fiber laser. Opt. Lett., 44, 2613(2019).
[27] B.Han, S.Lin, Y.Qi, Y.Rao, Z.Wang, H.Wu. Wideband remote-sensing based on random fiber laser. J. Lightwave Technol., 40, 3104-3110(2022).
[28] H.Liang, H.Liu, W.Wang, Z.Wang, H.Wu. Tailoring the efficiency and spectrum of a green random laser generated by frequency doubling of random fiber lasers. Opt. Express, 29, 21521(2021).
[29] S. A.Babin, A. E.El-Taher, P.Harper, E. V.Podivilov, S. K.Turitsyn. Tunable random fiber laser. Phys. Rev. A, 84, 021805(2011).
[30] S.Cui, Y.Feng, H.Jiang, W.Pan, X.Yang, L.Zhang. Nearly-octave wavelength tuning of a continuous wave fiber laser. Sci. Rep., 7, 42611(2017).
[31] J.Chen, J.Leng, J.Wu, H.Xiao, J.Xu, J.Ye, H.Zhang, P.Zhou. Tandem pumping architecture enabled high power random fiber laser with near-diffraction-limited beam quality. Sci. China: Technol. Sci., 62, 80-86(2019).
[32] W.Chen, Y.Li, F.Pang, T.Wang, H.Xie, L.Zhan, L.Zhang. Towards optimal conversion efficiency of Brillouin random fiber lasers in a half-open linear cavity. Opt. Express, 30, 32097(2022).
[33] S.Du, M.Gong, D.Li, T.Qi, Q.Xiao, P.Yan. 10 kW fiber amplifier seeded by random fiber laser with suppression of spectral broadening and SRS. IEEE Photonics Technol. Lett., 34, 721-724(2022).
[34] H.Chen, S.Chen, W.Chen, Y.Chen, D.He, J.Hu, L.Hu, S.Li, T.Meng, J.Tang, B.Wang, X.Wang, L.Wen, Y.Xu. Research and development of neodymium phosphate laser glass for high power laser application. Opt. Mater., 63, 213-220(2017).
[35] B.Han, H.Liang, Z.Wang, H.Wu. Statistical properties of Er/Yb co-doped random Rayleigh feedback fiber laser. Chin. Opt. Lett., 19, 021402(2021).
[36] A. E.Bednyakova, M. P.Fedoruk, A. A.Fotiadi, A. S.Kurkov, A. I.Latkin, E.Sholokhov, S. K.Turitsyn. Modeling of CW Yb-doped fiber lasers with highly nonlinear cavity dynamics. Opt. Express, 19, 8394(2011).
[37] D. V.Churkin, S. V.Smirnov. Modeling of spectral and statistical properties of a random distributed feedback fiber laser. Opt. Express, 21, 21236(2013).
[38] Y.Chen, W.Dai, Z.Dang, X.Deng, B.Feng, L.Guo, D.Hu, H.Jia, F.Jing, D.Lin, L.Liu, Z.Peng, F.Wang, F.Wang, X.Wei, Y.Xiang, X.Xie, D.Xu, X.Yuan, R.Zhang, X.Zhang, W.Zheng, W.Zhou, Q.Zhu. Laser performance upgrade for precise ICF experiment in SG-III laser facility. Matter Radiat. Extremes, 2, 243-255(2017).
[39] M.Fan, W.Sun, Z.Wang, H.Wu, L.Zhang. Low-threshold, high-efficiency random fiber laser with linear output. IEEE Photonics Technol. Lett., 27, 319-322(2015).
[40] Z.Chen, C.Fan, X.Fu, S.Gao, J.Tang, X.Xie, K.Yao. Multi-beam large fundamental mode neodymium glass regenerative amplifier with uniform performance. Front. Phys., 10, 923402(2022).
[41] S.Lin, Y.Qi, Y.Rao, Z.Wang. Long-distance random fiber laser sensing system with ultra-fast signal demodulation, Th2A.13(2022).
[42] J.Lindl. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas, 2, 3933-4024(1995).
[43] X.Chen, Y.Cui, P.Du, W.Feng, S.Fu, Y.Gao, Y.Hua, X.Huang, L.Ji, F.Li, X.Li, D.Liu, J.Liu, J.Liu, W.Ma, W.Pei, D.Rao, C.Shan, H.Shi, Z.Sui, X.Sun, T.Wang, L.Xia, T.Zhang, X.Zhao, J.Zhu. Development of low-coherence high-power laser drivers for inertial confinement fusion. Matter Radiat. Extremes, 5, 065201(2020).
[44] B.Afeyan, S.Hüller. Simulations of drastically reduced SBS with laser pulses composed of a Spike Train of Uneven Duration and Delay (STUD pulses). EPJ Web Conf., 59, 05010(2013).
Get Citation
Copy Citation Text
Mengqiu Fan, Shengtao Lin, Ke Yao, Yifei Qi, Jiaojiao Zhang, Junwen Zheng, Pan Wang, Longqun Ni, Xingyu Bao, Dandan Zhou, Bo Zhang, Kaibo Xiao, Handing Xia, Rui Zhang, Ping Li, Wanguo Zheng, Zinan Wang. Spectrum-tailored random fiber laser towards ICF laser facility[J]. Matter and Radiation at Extremes, 2023, 8(2): 025902
Category: Inertial Confinement Fusion Physics
Received: Oct. 5, 2022
Accepted: Dec. 21, 2022
Published Online: Apr. 12, 2023
The Author Email: Wang Zinan (znwang@uestc.edu.cn)