[1] D. S.Montgomery. Two decades of progress in understanding and control of laser plasma instabilities in indirect drive inertial fusion. Phys. Plasmas, 23, 055601(2016).
[2] C.Labaune. Incoherent light on the road to ignition. Nat. Phys., 3, 680-682(2007).
[3] R. L.Berger, L.Divol, S.Dixit, M.Dorr, D. H.Froula, S. H.Glenzer, B. A.Hammel, C.Haynam, J. A.Hittinger, J. P.Holder, O. S.Jones, D. H.Kalantar, O. L.Landen, A. B.Langdon, S.Langer, B. J.MacGowan, A. J.Mackinnon, N.Meezan, E. I.Moses, C.Niemann, C. H.Still, L. J.Suter, R. J.Wallace, E. A.Williams, B. K. F.Young. Experiments and multiscale simulations of laser propagation through ignition-scale plasmas. Nat. Phys., 3, 716-719(2007).
[4] J.Edwards, O.Landen, J.Lindl, E.Moses. Review of the National Ignition Campaign 2009-2012. Phys. Plasmas, 21, 020501(2014).
[5] C.Gouedard, G.Thiell, D.Veron. Optical smoothing of the high power PHEBUS Nd-glass laser using the multimode optical fiber technique. Opt. Commun., 97, 259-271(1993).
[6] R.Eckardt, R. H.Lehmberg, C. K.Manka, S.Obenschain, C. J.Pawley, M. S.Pronko. Efficient second harmonic conversion of broad-band high-peak-power Nd:glass laser radiation using large-aperture KDP crystals in quadrature. IEEE J. Quantum Electron., 26, 337-347(1990).
[7] T.Kanabe, N.Miyanaga, S.Nakai, H.Nakano, M.Nakatsuka, K.Tsubakimoto. Partially coherent light sources for ICF experiment. Proc. SPIE, 1870, 151-162(1993).
[8] S. I.Fedotov, L. P.Feoktistov, M. V.Osipov, A. N.Starodub. Lasers for ICF with a controllable function of mutual coherence of radiation. J. Russ. Laser Res., 25, 79-92(2004).
[9] M.Bowers, S.Burkhart, S.Cohen, G.Erbert, J.Heebner, M.Hermann, D.Jedlovec. The injection laser system on the National Ignition Facility. Proc. SPIE, 6451, 64511M(2007).
[10] N.Beck, H.Co?c, J.-F.Gleyze, A.Jolly, D.Penninckx, L.Videau. Fiber lasers integration for LMJ. C. R. Phys., 7, 198-212(2006).
[11] L.Feng, C.Guang-Hui, L.Hong-Huan, W.Jian-Jun, T.Jun, D.Lei, L.Ming-Zhong, D.Qing-Hua, D.Yi-Fang, L.Yi-Ming, S.Zhan. Integrated all fiber optical pulse generation system for laser fusion driver. Acta Phys. Sin., 57, 1771(2008).
[13] X.Chen, Y.Cui, W.Feng, S.Fu, Y.Gao, Y.Hua, L.Ji, F.Li, X.Li, D.Liu, J.Liu, J.Liu, W.Ma, W.Pei, D.Pengyuan, D.Rao, C.Shan, H.Shi, Z.Sui, X.Sun, T.Wang, L.Xia, T.Zhang, X.Zhao, J.Zhu. High-power, low-coherence laser driver facility. Opt. Lett., 45, 6839(2020).
[14] Y.Cui, W.Feng, Y.Gao, L.Ji, F.Li, X.Li, D.Liu, J.Liu, J.Liu, W.Ma, D.Rao, C.Shan, H.Shi, Z.Sui, X.Zhao. 1 μJ nanosecond low-coherent laser source with precise temporal shaping and spectral control. Opt. Laser Technol., 122, 105850(2020).
[15] X.Chen, Y.Cui, P.Du, W.Feng, Y.Gao, L.Ji, F.Li, X.Li, D.Liu, J.Liu, J.Liu, W.Ma, D.Rao, H.Shi, Z.Sui, X.Sun, T.Wang, L.Xia, X.Zhao. High-efficiency second-harmonic generation of low-temporal-coherent light pulse. Opt. Lett., 44, 4359(2019).
[16] Y.Cui, W.Feng, Y.Gao, L.Ji, F.Li, X.Li, D.Liu, J.Liu, J.Liu, W.Ma, D.Rao, H.Shi, Z.Sui, T.Wang, L.Xia, X.Zhao. High-energy low-temporal-coherence instantaneous broadband pulse system. Opt. Lett., 44, 2859(2019).
[17] C.Dorrer, E. M.Hill, J. D.Zuegel. High-energy parametric amplification of spectrally incoherent broadband pulses. Opt. Express, 28, 451(2020).
[18] T.Borger, C.Dorrer, S.Herman, E. M.Hill, M.Spilatro. Broadband sum-frequency generation of spectrally incoherent pulses. Opt. Express, 29, 16135(2021).
[19] C.Dorrer, M.Spilatro. Spectral and temporal shaping of spectrally incoherent pulses in the infrared and ultraviolet. Opt. Express, 30, 4942(2022).
[20] J. W.Bates, R. K.Follett, R. H.Lehmberg, J. F.Myatt, S. P.Obenschain, J. G.Shaw, J. L.Weaver. Mitigation of cross-beam energy transfer in inertial-confinement-fusion plasmas with enhanced laser bandwidth. Phys. Rev. E, 97, 061202(2018).
[21] M.Chen, Z.Sheng, S.Weng, Y.Zhao, J.Zheng, H.Zhuo. Stimulated Raman scattering excited by incoherent light in plasma. Matter Radiat. Extremes, 2, 190-196(2017).
[22] J. D.Ania-Casta?ón, S. A.Babin, D. V.Churkin, A. E.El-Taher, P.Harper, S. I.Kablukov, V.Karalekas, E. V.Podivilov, S. K.Turitsyn. Random distributed feedback fibre laser. Nat. Photonics, 4, 231-235(2010).
[23] S. A.Babin, D. V.Churkin, E. V.Podivilov, Y.Rao, S.Sugavanam, S. K.Turitsyn, I. D.Vatnik, Z.Wang. Recent advances in fundamentals and applications of random fiber lasers. Adv. Opt. Photonics, 7, 516(2015).
[24] S. A.Babin, D. V.Churkin, M.Nikulin, E. V.Podivilov, S. K.Turitsyn, I. D.Vatnik. Random distributed feedback fibre lasers. Phys. Rep., 542, 133-193(2014).
[25] M.Fan, X.Jia, Y.Rao, Z.Wang, H.Wu, L.Zhang, W.Zhang. High power random fiber laser with short cavity length: Theoretical and experimental investigations. IEEE J. Sel. Top. Quantum Electron., 21, 10-15(2015).
[26] L.Huang, Y.Rao, J.Song, X.Wang, Z.Wang, H.Wu, J.Wu, J.Xu, X.Xu, H.Zhang, P.Zhou. Quasi-kilowatt random fiber laser. Opt. Lett., 44, 2613(2019).
[27] B.Han, S.Lin, Y.Qi, Y.Rao, Z.Wang, H.Wu. Wideband remote-sensing based on random fiber laser. J. Lightwave Technol., 40, 3104-3110(2022).
[28] H.Liang, H.Liu, W.Wang, Z.Wang, H.Wu. Tailoring the efficiency and spectrum of a green random laser generated by frequency doubling of random fiber lasers. Opt. Express, 29, 21521(2021).
[29] S. A.Babin, A. E.El-Taher, P.Harper, E. V.Podivilov, S. K.Turitsyn. Tunable random fiber laser. Phys. Rev. A, 84, 021805(2011).
[30] S.Cui, Y.Feng, H.Jiang, W.Pan, X.Yang, L.Zhang. Nearly-octave wavelength tuning of a continuous wave fiber laser. Sci. Rep., 7, 42611(2017).
[31] J.Chen, J.Leng, J.Wu, H.Xiao, J.Xu, J.Ye, H.Zhang, P.Zhou. Tandem pumping architecture enabled high power random fiber laser with near-diffraction-limited beam quality. Sci. China: Technol. Sci., 62, 80-86(2019).
[32] W.Chen, Y.Li, F.Pang, T.Wang, H.Xie, L.Zhan, L.Zhang. Towards optimal conversion efficiency of Brillouin random fiber lasers in a half-open linear cavity. Opt. Express, 30, 32097(2022).
[33] S.Du, M.Gong, D.Li, T.Qi, Q.Xiao, P.Yan. 10 kW fiber amplifier seeded by random fiber laser with suppression of spectral broadening and SRS. IEEE Photonics Technol. Lett., 34, 721-724(2022).
[34] H.Chen, S.Chen, W.Chen, Y.Chen, D.He, J.Hu, L.Hu, S.Li, T.Meng, J.Tang, B.Wang, X.Wang, L.Wen, Y.Xu. Research and development of neodymium phosphate laser glass for high power laser application. Opt. Mater., 63, 213-220(2017).
[35] B.Han, H.Liang, Z.Wang, H.Wu. Statistical properties of Er/Yb co-doped random Rayleigh feedback fiber laser. Chin. Opt. Lett., 19, 021402(2021).
[36] A. E.Bednyakova, M. P.Fedoruk, A. A.Fotiadi, A. S.Kurkov, A. I.Latkin, E.Sholokhov, S. K.Turitsyn. Modeling of CW Yb-doped fiber lasers with highly nonlinear cavity dynamics. Opt. Express, 19, 8394(2011).
[37] D. V.Churkin, S. V.Smirnov. Modeling of spectral and statistical properties of a random distributed feedback fiber laser. Opt. Express, 21, 21236(2013).
[38] Y.Chen, W.Dai, Z.Dang, X.Deng, B.Feng, L.Guo, D.Hu, H.Jia, F.Jing, D.Lin, L.Liu, Z.Peng, F.Wang, F.Wang, X.Wei, Y.Xiang, X.Xie, D.Xu, X.Yuan, R.Zhang, X.Zhang, W.Zheng, W.Zhou, Q.Zhu. Laser performance upgrade for precise ICF experiment in SG-III laser facility. Matter Radiat. Extremes, 2, 243-255(2017).
[39] M.Fan, W.Sun, Z.Wang, H.Wu, L.Zhang. Low-threshold, high-efficiency random fiber laser with linear output. IEEE Photonics Technol. Lett., 27, 319-322(2015).
[40] Z.Chen, C.Fan, X.Fu, S.Gao, J.Tang, X.Xie, K.Yao. Multi-beam large fundamental mode neodymium glass regenerative amplifier with uniform performance. Front. Phys., 10, 923402(2022).
[41] S.Lin, Y.Qi, Y.Rao, Z.Wang. Long-distance random fiber laser sensing system with ultra-fast signal demodulation, Th2A.13(2022).
[42] J.Lindl. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas, 2, 3933-4024(1995).
[43] X.Chen, Y.Cui, P.Du, W.Feng, S.Fu, Y.Gao, Y.Hua, X.Huang, L.Ji, F.Li, X.Li, D.Liu, J.Liu, J.Liu, W.Ma, W.Pei, D.Rao, C.Shan, H.Shi, Z.Sui, X.Sun, T.Wang, L.Xia, T.Zhang, X.Zhao, J.Zhu. Development of low-coherence high-power laser drivers for inertial confinement fusion. Matter Radiat. Extremes, 5, 065201(2020).
[44] B.Afeyan, S.Hüller. Simulations of drastically reduced SBS with laser pulses composed of a Spike Train of Uneven Duration and Delay (STUD pulses). EPJ Web Conf., 59, 05010(2013).