Journal of the Chinese Ceramic Society, Volume. 52, Issue 4, 1217(2024)
Effect of KNN on Energy Storage Performance of BNBST Ceramics
[1] [1] LI D X, ZENG X J, LI Z P, et al. Progress and perspectives in dielectric energy storage ceramics[J]. J Adv Ceram, 2021, 10(4): 675-703.
[2] [2] LI J L, SHEN Z H, CHEN X H, et al. Grain-orientation-engineered multilayer ceramic capacitors for energy storage applications[J]. Nat Mater, 2020, 19(9): 999-1005.
[3] [3] YANG B B, ZHANG Y, PAN H, et al. High-entropy enhanced capacitive energy storage[J]. Nat Mater, 2022, 21(9): 1074-1080.
[4] [4] KIM J, SAREMI S, ACHARYA M, et al. Ultrahigh capacitive energy density in ion-bombarded relaxor ferroelectric films[J]. Science, 2020, 369(6499): 81-84.
[5] [5] PAN H, LAN S, XU S Q, et al. Ultrahigh energy storage in superparaelectric relaxor ferroelectrics[J]. Science, 2021, 374(6563): 100-104.
[6] [6] PAN H, LI F, LIU Y, et al. Ultrahigh-energy density lead-free dielectric films via polymorphic nanodomain design[J]. Science, 2019, 365(6453): 578-582.
[7] [7] WU Jiagang, WANG Ke, LI Fei. J Chin Ceram Soc, 2022, 50(3): 555.
[8] [8] YANG Z T, DU H L, JIN L, et al. High-performance lead-free bulk ceramics for electrical energy storage applications: Design strategies and challenges[J]. J Mater Chem A, 2021, 9(34): 18026-18085.
[9] [9] PENG P, NIE H C, ZHENG C, et al. High-energy storage density in NaNbO3-modified (Bi0.5Na0.5)TiO3-BiAlO3-based lead-free ceramics under low electric field[J]. J Am Ceram Soc, 2021, 104(6): 2610-2620.
[10] [10] LI D X, SHEN Z Y, LI Z P, et al. Optimization of polarization behavior in (1-x)BSBNT-xNN ceramics for pulsed power capacitors[J]. J Mater Chem C, 2020, 8(23): 7650-7657.
[11] [11] LI D X, SHEN Z Y, LI Z P, et al. P-E hysteresis loop going slim in Ba0.3Sr0.7TiO3-modified Bi0.5Na0.5TiO3 ceramics for energy storage applications[J]. J Adv Ceram, 2020, 9(2): 183-192.
[12] [12] SUN Hongmei, LIU Xiao, LI Bo, et al. J Chin Ceram Soc, 2018, 46(9): 1210-1216.
[13] [13] LI J, JIN L, TIAN Y, et al. Enhanced energy storage performance under low electric field in Sm3+ doped AgNbO3 ceramics[J]. J Materiomics, 2022, 8(2): 266-273.
[14] [14] CHAO W N, TIAN L Y, YANG T Q, et al. Excellent energy storage performance achieved in novel PbHfO3-based antiferroelectric ceramics via grain size engineering[J]. Chem Eng J, 2022, 433: 133814.
[15] [15] LUO N N, HAN K, CABRAL M J, et al. Constructing phase boundary in AgNbO3 antiferroelectrics: Pathway simultaneously achieving high energy density and efficiency[J]. Nat Commun, 2020, 11(1): 4824.
[16] [16] LIAO Q B, BAO Y Z, YAN S G, et al. Tunable equivalent dielectric constant and superior energy storage stability in relaxor-like antiferroelectric PLZT ceramic[J]. J Eur Ceram Soc, 2022, 42(9): 3877-3885.
[17] [17] LI J L, LI F, XU Z, et al. Multilayer lead-free ceramic capacitors with ultrahigh energy density and efficiency[J]. Adv Mater, 2018, 30(32):1802155.
[18] [18] XIE A W, ZUO R Z, QIAO Z L, et al. NaNbO3-(Bi0.5Li0.5)TiO3 lead-free relaxor ferroelectric capacitors with superior energy-storage performances via multiple synergistic design[J]. Adv Energy Mater, 2021, 11(28): 2101378.
[19] [19] ZHANG L, PU X Y, CHEN M, et al. Influence of BaSnO3 additive on the energy storage properties of Na0.5Bi0.5TiO3-based relaxor ferroelectrics[J]. J Eur Ceram Soc, 2018, 38(5): 2304-2311.
[20] [20] PU Y P, ZHANG L, CUI Y F, et al. High energy storage density and optical transparency of microwave sintered homogeneous (Na0.5Bi0.5)(1-x)BaxTi(1-y)SnyO3 ceramics[J]. ACS Sustainable Chem Eng, 2018, 6(5): 6102-6109.
[21] [21] ZHANG L, PU Y P, CHEN M, et al. Novel Na0.5Bi0.5TiO3 based, lead-free energy storage ceramics with high power and energy density and excellent high-temperature stability[J]. Chem Eng J, 2020, 383: 123154.
[22] [22] ZHANG Y, XIE A W, FU J, et al. Superior energy-storage properties in Bi0.5Na0.5TiO3-based lead-free ceramics via simultaneously manipulating multiscale structure and field-induced structure transition[J]. ACS Appl Mater Interfaces, 2022, 14(35): 40043-40051.
[23] [23] ZHOU X F, XUE G L, LUO H, et al. Phase structure and properties of sodium bismuth titanate lead-free piezoelectric ceramics[J]. Prog Mater Sci, 2021, 122: 100836.
[24] [24] LI G H, YAN F, ZHU K, et al. Intelligent self-actuating lead-free cooling ceramics based on A-site defect engineering[J]. Acta Mater, 2022, 227: 117750.
[25] [25] LI Z P, LI D X, SHEN Z Y, et al. Remarkably enhanced dielectric stability and energy storage properties in BNT—BST relaxor ceramics by A-site defect engineering for pulsed power applications[J]. J Adv Ceram, 2022, 11(2): 283-294.
[26] [26] GUO B, ZHANG L Y, DONG J, et al. Enhanced energy storage properties of ZrO2-doped (Na0.5Bi0.5)0.4Sr0.6TiO3 Pb-free relaxor ferroelectric ceramics[J]. Ceram Int, 2021, 47(6): 8545-8554.
[27] [27] MA W G, FAN P Y, SALAMON D, et al. Fine-grained BNT-based lead-free composite ceramics with high energy-storage density[J]. Ceram Int, 2019, 45(16): 19895-19901.
[28] [28] QIAO X S, WU D, ZHANG F D, et al. Enhanced energy density and thermal stability in relaxor ferroelectric Bi0.5Na0.5TiO3-Sr0.7Bi0.2TiO3 ceramics[J]. J Eur Ceram Soc, 2019, 39(15): 4778-4784.
[29] [29] QIAO X S, ZHANG F D, WU D, et al. Superior comprehensive energy storage properties in Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics[J]. Chem Eng J, 2020, 388: 124158.
[30] [30] KANG R R, WANG Z P, LIU W Y, et al. Domain engineered lead-free ceramics with large energy storage density and ultra-high efficiency under low electric fields[J]. ACS Appl Mater Interfaces, 2021, 13(21): 25143-25152.
[31] [31] ZHOU X F, QI H, YAN Z N, et al. Large energy density with excellent stability in fine-grained (Bi0.5Na0.5)TiO3-based lead-free ceramics[J]. J Eur Ceram Soc, 2019, 39(14): 4053-4059.
[32] [32] LI Zhipeng. Study on the optimization of electrical energy storage properties and temperature stability of BNBST-based relaxor ferroelectric ceramics[D]. Jingdezhen: Jingdezhen Ceramic University, 2021.
[33] [33] PETZELT J, KAMBA S, FáBRY J, et al. Infrared, Raman and high-frequency dielectric spectroscopy and the phase transitions in Na1/2Bi1/2TiO3[J]. J Phys: Condens Matter, 2004, 16(15): 2719-2731.
[34] [34] ROUT D, MOON K S, KANG S J L, et al. Dielectric and Raman scattering studies of phase transitions in the (100-x)Na0.5Bi0.5TiO3- xSrTiO3 system[J]. J Appl Phys, 2010, 108(8): 809.
[35] [35] YANG F, LI Q, ZHANG A, et al. High energy storage density and temperature stable dielectric properties of (1-x)Bi0.5(Na0.82K0.18)0.5Ti0.99(Y0.5Nb0.5)0.01O3-xNaNbO3 ceramics[J]. J Alloys Compd, 2022, 925: 166782.
[36] [36] YAN F, BAI H R, GE G L, et al. Composition and structure optimized BiFeO3-SrTiO3 lead-free ceramics with ultrahigh energy storage performance[J]. Small, 2022, 18(10): 2106515.
[37] [37] CHEN L, DENG S Q, LIU H, et al. Giant energy-storage density with ultrahigh efficiency in lead-free relaxors via high-entropy design[J]. Nat Commun, 2022, 13(1): 3089.
[38] [38] PANG F H, CHEN X L, SUN C C, et al. Ultrahigh energy storage characteristics of sodium niobate-based ceramics by introducing a local random field[J]. ACS Sustainable Chem Eng, 2020, 8(39): 14985-14995.
[39] [39] ZHOU M X, LIANG R H, ZHOU Z Y, et al. Novel BaTiO3-based lead-free ceramic capacitors featuring high energy storage density, high power density, and excellent stability[J]. J Mater Chem C, 2018, 6(31): 8528-8537.
[40] [40] WANG H, YUAN H, LI X Y, et al. Enhanced energy density and discharged efficiency of lead-free relaxor (1-x)[(Bi0.5Na0.5)0.94Ba0.06]0.98La0.02TiO3- xKNb0.6Ta0.4O3 ceramic capacitors[J]. Chem Eng J, 2020, 394: 124879.
[41] [41] HU D, PAN Z B, ZHANG X, et al. Greatly enhanced discharge energy density and efficiency of novel relaxation ferroelectric BNT-BKT-based ceramics[J]. J Mater Chem C, 2020, 8(2): 591-601.
[42] [42] HUANG Y, LI F, HAO H, et al. (Bi0.51Na0.47)TiO3 based lead free ceramics with high energy density and efficiency[J]. J Materiomics, 2019, 5(3): 385-393.
[43] [43] ZHU Wen, MENG Yue, SONG Fusheng, et al. J Ceram, 2023, 44(3): 525-533.
[44] [44] ZHOU X F, QI H, YAN Z N, et al. Superior thermal stability of high energy density and power density in domain-engineered Bi0.5Na0.5TiO3-NaTaO3 relaxor ferroelectrics[J]. ACS Appl Mater Interfaces, 2019, 11(46): 43107-43115.
[45] [45] CHEN P, CHU B J. Improvement of dielectric and energy storage properties in Bi(Mg1/2Ti1/2)O3-modified (Na1/2Bi1/2)0.92Ba0.08TiO3 ceramics[J]. J Eur Ceram Soc, 2016, 36(1): 81-88.
[46] [46] LI D X, SHEN Z Y, LI Z P, et al. Effect of (Nb2/3Mg1/3)4+ complex on the dielectric and ferroelectric properties of (Ba0.3Sr0.7)0.35(Bi0.5Na0.5)0.65TiO3 ceramics for energy storage[J]. J Mater Sci Mater Electron, 2020, 31(4): 3648-3653.
[47] [47] NI Bo, ZHANG Xiaoyan, ZHEN Ru, et al. J Chin Ceram Soc, 2022, 50(6): 1475-1480.
[48] [48] LI C Y, LIU J K, BAI W F, et al. Superior energy storage performance in (Bi0.5Na0.5)TiO3-based lead-free relaxor ferroelectrics for dielectric capacitor application via multiscale optimization design[J]. J Mater Chem A, 2022, 10(17): 9535-9546.
Get Citation
Copy Citation Text
LI Zhipeng, SHEN Zongyang, LI Yan, WANG Zhumei, SHI Xuhai, DENG Wei, LI Yueming. Effect of KNN on Energy Storage Performance of BNBST Ceramics[J]. Journal of the Chinese Ceramic Society, 2024, 52(4): 1217
Category:
Received: Sep. 28, 2023
Accepted: --
Published Online: Aug. 19, 2024
The Author Email: Zongyang SHEN (shenzongyang@163.com)