Journal of Advanced Dielectrics, Volume. 15, Issue 1, 2450008(2025)
Orientation-dependent tunneling electroresistance in Pt/Pb(Zr,Ti)O3/Nb:SrTiO3 ferroelectric tunnel junctions
[1] E. Y. Tsymbal, H. Kohlstedt. Tunneling across a ferroelectric. Science, 313, 181(2006).
[2] D. Pantel, M. Alexe. Electroresistance effects in ferroelectric tunnel barriers. Phys. Rev. B, 82, 134105(2010).
[3] H. Kohlstedt, N. A. Pertsev, J. Rodríguez Contreras, R. Waser. Theoretical current–voltage characteristics of ferroelectric tunnel junctions. Phys. Rev. B, 72, 125341(2005).
[4] Z. Wen, D. Wu. Ferroelectric tunnel junctions: Modulations on the potential barrier. Adv. Mater., 32, 1904123(2019).
[5] J. Rao, Z. Fan, Q. Huang, Y. Luo, X. Zhang, H. Guo, X. Yan, G. Tian, D. Chen, Z. Hou, M. Qin, M. Zeng, X. Lu, G. Zhou, X. Gao, J. Liu. Experimental search for high-performance ferroelectric tunnel junctions guided by machine learning. J. Adv. Dielect., 12, 2250005(2022).
[6] R. Guo, W. Lin, X. Yan, T. Venkatesan, J. Chen. Ferroic tunnel junctions and their application in neuromorphic networks. Appl. Phys. Rev., 7, 011304(2020).
[7] V. Garcia, S. Fusil, K. Bouzehouane, S. Enouz-Vedrenne, N. D. Mathur, A. Barthélémy, M. Bibes. Giant tunnel electroresistance for non-destructive readout of ferroelectric states. Nature, 460, 81(2009).
[8] J. F. Scott. Applications of modern ferroelectrics. Science, 315, 954(2007).
[9] J. P. Velev, J. D. Burton, M. Y. Zhuravlev, E. Y. Tsymbal. Predictive modelling of ferroelectric tunnel junctions. Npj Comput. Mater., 2, 16009(2016).
[10] M. Y. Zhuravlev, R. F. Sabirianov, S. S. Jaswal, E. Y. Tsymbal. Giant electroresistance in ferroelectric tunnel junctions. Phys. Rev. Lett., 94, 246802(2005).
[11] A. Gruverman, D. Wu, H. Lu, Y. Wang, H. W. Jang, C. M. Folkman, M. Y. Zhuravlev, D. Felker, M. Rzchowski, C.-B. Eom, E. Y. Tsymbal. Tunneling electroresistance effect in ferroelectric tunnel junctions at the nanoscale. Nano Lett., 9, 3539(2009).
[12] D. Pantel, S. Goetze, D. Hesse, M. Alexe. Reversible electrical switching of spin polarization in multiferroic tunnel junctions. Nat. Mater., 11, 289(2012).
[13] Z. Gao, W. Zhang, Q. Zhong, Y. Zheng, S. Lv, Q. Wu, Y. Song, S. Zhao, Y. Zheng, T. Xin, Y. Wang, W. Wei, X. Ren, J. Yang, C. Ge, J. Tao, Y. Cheng, H. Lyu. Giant electroresistance in hafnia-based ferroelectric tunnel junctions via enhanced polarization. Device, 1, 100004(2023).
[14] A. Zenkevich, M. Minnekaev, Y. Matveyev, Y. Lebedinskii, K. Bulakh, A. Chouprik, A. Baturin, K. Maksimova, S. Thiess, W. Drube. Electronic band alignment and electron transport in Cr/BaTiO3/Pt ferroelectric tunnel junctions. Appl. Phys. Lett., 102, 062907(2013).
[15] Z. Luo, Z. Wang, Z. Guan, C. Ma, L. Zhao, C. Liu, H. Sun, H. Wang, Y. Lin, X. Jin, Y. Yin, X. Li. High-precision and linear weight updates by sub-nanosecond pulses in ferroelectric tunnel junction for neuro-inspired computing. Nat. Commun., 13, 699(2022).
[16] L. Wang, M. R. Cho, Y. J. Shin, J. R. Kim, S. Das, J.-G. Yoon, J.-S. Chung, T. W. Noh. Overcoming the fundamental barrier thickness limits of ferroelectric tunnel junctions through BaTiO3/SrTiO3 composite barriers. Nano Lett., 16, 3911(2016).
[17] Y. W. Yin, J. D. Burton, Y.-M. Kim, A. Y. Borisevich, S. J. Pennycook, S. M. Yang, T. W. Noh, A. Gruverman, X. G. Li, E. Y. Tsymbal, Q. Li. Enhanced tunnelling electroresistance effect due to a ferroelectrically induced phase transition at a magnetic complex oxide interface. Nat. Mater., 12, 397(2013).
[18] Z. Wen, C. Li, D. Wu, A. Li, N. Ming. Ferroelectric-field-effect-enhanced electroresistance in metal/ferroelectric/semiconductor tunnel junctions. Nat. Mater., 12, 617(2013).
[19] J. Li, N. Li, C. Ge, H. Huang, Y. Sun, P. Gao, M. He, C. Wang, G. Yang, K. Jin. Giant electroresistance in ferroionic tunnel junctions. iScience, 16, 368(2019).
[20] K. Klyukin, L. L. Tao, E. Y. Tsymbal, V. Alexandrov. Defect-assisted tunneling electroresistance in ferroelectric tunnel junctions. Appl. Phys. Lett., 121, 056601(2018).
[21] C. Ma, Z. Luo, W. Huang, L. Zhao, Q. Chen, Y. Lin, X. Liu, Z. Chen, C. Liu, H. Sun, X. Jin, Y. Yin, X. Li. Sub-nanosecond memristor based on ferroelectric tunnel junction. Nat. Commun., 11, 1439(2020).
[22] Y. Yang, M. Wu, X. Zheng, C. Zheng, J. Xu, Z. Xu, X. Li, X. Lou, D. Wu, X. Liu, S. Pennycook, Z. Wen. Atomic-scale fatigue mechanism of ferroelectric tunnel junctions. Sci. Adv., 7, eabf2716(2021).
[23] J. Hwang, Y. Goh, S. Jeon. Effect of forming gas high-pressure annealing on metal-ferroelectric-semiconductor hafnia ferroelectric tunnel junction. IEEE Electron Device Lett., 41, 1193(2020).
[24] M. Gajek, M. Bibes, S. Fusil, K. Bouzehouane, J. Fontcuberta, A. Barthélémy, A. Fert. Tunnel junctions with multiferroic barriers. Nat. Mater., 6, 296(2007).
[25] Y. Yang, Z. Xi, Y. Dong, C. Zheng, H. Hu, X. Li, Z. Jiang, W. C. Lu, D. Wu, Z. Wen. Spin-filtering ferroelectric tunnel junctions as multiferroic synapses for neuromorphic computing. ACS Appl. Mater. Interfaces, 12, 56300(2020).
[26] A. Chanthbouala, V. Garcia, R. O. Cherifi, K. Bouzehouane, S. Fusil, X. Moya, S. Xavier, H. Yamada, C. Deranlot, N. D. Mathur, M. Bibes, A. Barthélémy, J. Grollier. A ferroelectric memristor. Nat. Mater., 11, 860(2012).
[27] S. Boyn, J. Grollier, G. Lecerf, B. Xu, N. Locatelli, S. Fusil, S. Girod, C. Carrétéro, K. Garcia, S. Xavier, J. Tomas, L. Bellaiche, M. Bibes, A. Barthélémy, S. Saïghi, V. Garcia. Learning through ferroelectric domain dynamics in solid-state synapses. Nat. Commun., 8, 14736(2017).
[28] G. Cao, C. Gao, J. Wang, J. Lan, X. Yan. Memristor based on two-dimensional titania nanosheets for multilevel storage and information processing. Nano Res., 15, 8419(2022).
[29] X. Yan, G. Cao, J. Wang, M. Man, J. Zhao, Z. Zhou, H. Wang, Y. Pei, K. Wang, C. Gao, J. Lou, D. Ren, C. Lu, J. Chen. Memristors based on multilayer graphene electrodes for implementing a low-power neuromorphic electronic synapse. J. Mater. Chem. C, 8, 4926(2020).
[30] J. Wu, J. Wang. Orientation dependence of ferroelectric behavior of BiFeO3 thin films. J. Appl. Phys., 106, 104111(2009).
[31] R. Ramesh, T. Sands, V. G. Keramidas. Effect of crystallographic orientation on ferroelectric properties of PbZr0.2Ti0.8O3 thin films. Appl. Phys. Lett., 63, 731(1993).
[32] S. B. Desu, D. P. Vijay, X. Zhang, B. P. He. Oriented growth of SrBi2Ta2O9 ferroelectric thin films. Appl. Phys. Lett., 69, 1719(1996).
[33] Z. Yu, R. Guo, A. S. Bhalla. Orientation dependence of the ferroelectric and piezoelectric behavior of Ba(Ti1−xZrx)O3 single crystals. Appl. Phys. Lett., 77, 1535(2000).
[34] R. Xu, S. Liu, S. Saremi, R. Gao, J. J. Wang, Z. Hong, H. Lu, A. Ghosh, S. Pandya, E. Bonturim, Z. H. Chen, L. Q. Chen, A. M. Rappe, L. W. Martin. Kinetic control of tunable multi-state switching in ferroelectric thin films. Nat. Commun., 10, 1282(2019).
[35] R. Xu, S. Liu, I. Grinberg, J. Karthik, A. R. Damodaran, A. M. Rappe, L. W. Martin. Ferroelectric polarization reversal via successive ferroelastic transitions. Nat. Mater., 14, 79(2015).
[36] P. K. Panda, B. Sahoo. PZT to lead free piezo ceramics: A review. Ferroelectrics, 474, 128(2015).
[37] S. Jesse, A. P. Baddorf, S. V. Kalinin. Switching spectroscopy piezoresponse force microscopy of ferroelectric materials. Appl. Phys. Lett., 88, 062908(2006).
[38] N. Balke, P. Maksymovych, S. Jesse, A. Herklotz, A. Tselev, C. B. Eom, I. I. Kravchenko, P. Yu, S. V. Kalinin. Differentiating ferroelectric and nonferroelectric electromechanical effects with scanning probe microscopy. ACS Nano, 9, 6484(2015).
[39] S. Suzuki, T. Yamamoto, H. Suzuki, K. Kawaguchi, K. Takahashi, Y. Yoshisato. Fabrication and characterization of Ba1−xKx BiO3/Nb-doped SrTiO3 all-oxide-type Schottky junctions. J. Appl. Phys., 81, 6830(1997).
[40] E. Mikheev, B. D. Hoskins, D. B. Strukov, S. Stemmer. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nat. Commun., 5, 3990(2014).
[41] J. H. Barrett. Dielectric constant in perovskite type crystals. Phys. Rev., 86, 118(1952).
[42] Z. Xi, J. Ruan, C. Li, C. Zheng, Z. Wen, J. Dai, A. Li, D. Wu. Giant tunnelling electroresistance in metal/ferroelectric/semiconductor tunnel junctions by engineering the Schottky barrier. Nat. Commun., 8, 15217(2017).
[43] A. K. Tagantsev, I. Stolichnov, N. Setter, J. S. Cross, M. Tsukada. Non-Kolmogorov–Avrami switching kinetics in ferroelectric thin film. Phys. Rev. B, 66, 214109(2002).
[44] J. Y. Jo, H. S. Han, J.-G. Yoon, T. K. Song, S.-H. Kim, T. W. Noh. Domain switching kinetics in disordered ferroelectric thin films. Phys. Rev. Lett., 99, 267602(2007).
[45] W. J. Merz. Domain formation and domain wall motions in ferroelectric BaTiO3 single crystals. Phys. Rev., 95, 690(1954).
[46] X. Li, C. Li, Z. Xu, Y. Li, Y. Yang, H. Hu, Z. Jiang, J. Wang, J. Ren, C. Zheng, C. Lu, Z. Wen. Ferroelectric properties and polarization fatigue of La:HfO2 thin-film capacitors. Phys. Status Solidi RRL — Rapid Res. Lett., 15, 2000481(2021).
[47] G. Bi, M. Poo. Synaptic modification by correlated activity: Hebb’s postulate revisited. Annu. Rev. Neurosci., 24, 139(2001).
Get Citation
Copy Citation Text
Chunyan Ding, Chunyan Zheng, Weijie Zheng, Chenyu Dong, Yahui Yu, Zheng Wen. Orientation-dependent tunneling electroresistance in Pt/Pb(Zr,Ti)O3/Nb:SrTiO3 ferroelectric tunnel junctions[J]. Journal of Advanced Dielectrics, 2025, 15(1): 2450008
Category: Research Articles
Received: Jan. 22, 2024
Accepted: Apr. 18, 2024
Published Online: Feb. 18, 2025
The Author Email: Wen Zheng (zwen@qdu.edu.cn)