Journal of Terahertz Science and Electronic Information Technology , Volume. 22, Issue 7, 695(2024)

Tunable wideband terahertz metamaterial absorber based on double-layer VO2

DONG Liang1... XIANG Huanqi1, and ZHU Lei1,23,* |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(33)

    [1] [1] FEDERICI J F,SCHULKIN B,HUANG Feng,et al. THz imaging and sensing for security applications—explosives, weapons and drugs[J]. Semiconductor Science and Technology, 2005,20(7):S266-S280. doi:10.1088/0268-1242/20/7/018.

    [2] [2] SATO Y,IZUI K,YAMADA T,et al. Robust topology optimization of optical cloaks under uncertainties in wave number and angle of incident wave[J]. International Journal for Numerical Methods in Engineering, 2020,121(17):3926-3954. doi:10.1002/nme.6393.

    [3] [3] LIU Baiyang, GIDDENS H, LI Yin, et al. Design and experimental demonstration of Doppler cloak from spatiotemporally modulated metamaterials based on rotational Doppler effect[J]. Optics Express, 2020, 28(3): 3745-3755. doi: 10.1364/OE.382700.

    [4] [4] HUANG Kaocheng,WANG Zhaocheng.Terahertz terabit wireless communication[J]. IEEE Microwave Magazine, 2011,12(4):108-116. doi:10.1109/MMM.2011.940596.

    [5] [5] DEAN P, MITROFANOV O, KEELEY J, et al. Apertureless near-field terahertz imaging using the self-mixing effect in a quantum cascade laser[J]. Applied Physics Letters, 2016,108(9):091113-1-4. doi:10.1063/1.4943088.

    [6] [6] LUO Liang,CHATZAKIS I,WANG Jigang,et al. Broadband terahertz generation from metamaterials[J]. Nature Communications,2014,5(1):1-6. doi:10.1038/ncomms4055.

    [7] [7] WITHAYACHUMNANKUL W,ABBOTT D. Metamaterials in the terahertz regime[J]. IEEE Photonics Journal, 2009, 1(2): 99-118. doi:10.1109/JPHOT.2009.2026288.

    [8] [8] KOSCHNY T, KAFESAKI M, ECONOMOU E N, et al. Effective medium theory of left-handed materials[J]. Physical Review Letters, 2004,93(10):107402. doi:10.1103/PhysRevLett.93.107402.

    [9] [9] SHELBY R A,SMITH D R,SCHULTZ S. Experimental verification of a negative index of refraction[J]. Science, 2001,292(5514):77-79. doi:10.1126/science.1058847.

    [10] [10] PENDRY J B. Negative refraction makes a perfect lens[J]. Physical Review Letters, 2000, 85(18): 3966-3969. doi: 10.1103/PhysRevLett.85.3966.

    [11] [11] MA Hua,QU Shaobo,XU Zhuo,et al. The open cloak[J]. Applied Physical Letters, 2009,94(10):103501. doi:10.1063/1.3095436.

    [12] [12] CUMMER S A,POPA B I,SCHURIG D,et al. Full-wave simulations of electromagnetic cloaking structures[J]. Physical Review E, 2006,74(3):036621. doi:10.1103/PhysRevE.74.036621.

    [13] [13] PAQUAY M,IRIARTE J C,EDERRA I ?,et al. Thin AMC structure for radar cross-section reduction[J]. IEEE Transactions on Antennas and Propagation, 2007,55(12):3630-3638. doi:10.1109/TAP.2007.910306.

    [14] [14] LANDY N I,SAJUYIGBE S,MOCK J J,et al. Perfect metamaterial absorber[J]. Physical Review Letters, 2008,100(20):207402.doi:10.1103/PhysRevLett.100.207402.

    [15] [15] ZHU Jianfei,MA Zhaofeng, SUN Wujiong, et al. Ultra-broadband terahertz metamaterial absorber[J]. Applied Physics Letters,2014,105(2):021102. doi:10.1063/1.4890521.

    [16] [16] RI K J, RI C H, RI Songyun. Ultra-broadband terahertz metamaterial absorber using a simple design method[J]. Optics Communications, 2022(515):128191. doi:10.1016/j.optcom.2022.128191.

    [18] [18] HU Dan,MENG Tianhua,WANG Hongyan,et al. Ultra-narrow-band terahertz perfect metamaterial absorber for refractive index sensing application[J]. Results in Physics, 2020(19):103567. doi:10.1016/j.rinp.2020.103567.

    [19] [19] WANG Yue,YUE Lisha,CUI Zijian,et al. Optically tunable single narrow band all-dielectric terahertz metamaterials absorber[J].AIP Advances, 2020,10(4):045039. doi:10.1063/5.0003817.

    [20] [20] CHEN Fu,CHENG Yongzhi,LUO Hui. Temperature tunable narrow-band terahertz metasurface absorber based on InSb microcylinder arrays for enhanced sensing application[J]. IEEE Access, 2020(8): 82981-82988. doi: 10.1109/ACCESS. 2020.2991331.

    [21] [21] REN Yi, ZHOU Tianle, JIANG Chun, et al. Thermally switching between perfect absorber and asymmetric transmission in vanadium dioxide-assisted metamaterials[J]. Optics Express, 2021,29(5):7666-7679. doi:10.1364/OE.418273.

    [22] [22] ZHU Lei, LI Haodong, DONG Liang, et al. Dual-band Electromagnetically Induced Transparency(EIT) terahertz metamaterial sensor[J]. Optical Materials Express, 2021,11(7):2109-2121. doi:10.1364/OME.425126.

    [23] [23] ZHU Lei, RONG Miaoxin, LI Haodong, et al. High-sensitivity metamaterial sensor based on Electromagnetically Induced Transparency(EIT) effect[J]. Laser Physics, 2022,32(11):116203. doi:10.1088/1555-6611/ac967e.

    [24] [24] CHENG Yongzhi,LIU Jiaqi,CHEN Fu,et al. Optically switchable broadband metasurface absorber based on square ring shaped photoconductive silicon for terahertz waves[J]. Physics Letters,A, 2021(402):127345. doi:10.1016/j.physleta.2021.127345.

    [25] [25] WANG Shengxiang,CAI Chengfeng,YOU Menghan,et al. Vanadium dioxide based broadband THz metamaterial absorbers with high tunability: simulation study[J]. Optics Express, 2019,27(14):19436-19447. doi:10.1364/OE.27.019436.

    [26] [26] SONG Zhengyong,WANG Kai,LI Jiawen,et al. Broadband tunable terahertz absorber based on vanadium dioxide metamaterials[J].Optics Express, 2018,26(6):7148-7154. doi:10.1364/OE.26.007148.

    [27] [27] DAO Rina,KONG Xinru,ZHANG Haifeng, et al. A tunable broadband terahertz metamaterial absorber based on the vanadium dioxide[J]. Optik, 2019(180):619-625. doi:10.1016/j.ijleo.2018.12.004.

    [28] [28] BAI Jinjun,ZHANG Shusheng,FAN Fei,et al. Tunable broadband THz absorber using vanadium dioxide metamaterials[J]. Optics Communications, 2019(452):292-295. doi:10.1016/j.optcom.2019.07.057.

    [30] [30] HUANG Jin,LI Jining,YANG Yue, et al. Active controllable dual broadband terahertz absorber based on hybrid metamaterials with vanadium dioxide[J]. Optics Express, 2020,28(5):7018-7027. doi:10.1364/OE.387156.

    [31] [31] LIU Yongchen,QIAN Yixian,HU Fangrong,et al. A dynamically adjustable broadband terahertz absorber based on a vanadium dioxide hybrid metamaterial[J]. Results in Physics, 2020(19):103384. doi:10.1016/j.rinp.2020.103384.

    [33] [33] WANG Shengxiang, KANG Lei, WERNER D H. Hybrid resonators and highly tunable terahertz metamaterials enabled by vanadium dioxide(VO2)[J]. Scientific Reports, 2017,7(1):4326. doi:10.1038/s41598-017-04692-8.

    [34] [34] ZHU Yanhan, ZHAO Yong,HOLTZ M, et al. Effect of substrate orientation on terahertz optical transmission through VO2 thin films and application to functional antireflection coatings[J]. Journal of the Optical Society of America B—Optical Physics,2012,29(9):2373-2378. doi:10.1364/JOSAB.29.002373.

    [35] [35] LIU Mengkun, HWANG H Y, TAO H, et al. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial[J]. Nature, 2012,487(7407):345-348. doi:10.1038/nature11231.

    [36] [36] CHE Zonge,LI Zhongxian,ZHANG Guanmao,et al. Active controllable broadband absorber based on vanadium dioxide[C]// 2021Photonics & Electromagnetics Research Symposium(PIERS). Hangzhou, China: IEEE, 2021: 604-608. doi: 10.1109/PIERS53385.2021.9694733.

    Tools

    Get Citation

    Copy Citation Text

    DONG Liang, XIANG Huanqi, ZHU Lei. Tunable wideband terahertz metamaterial absorber based on double-layer VO2[J]. Journal of Terahertz Science and Electronic Information Technology , 2024, 22(7): 695

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 25, 2023

    Accepted: --

    Published Online: Aug. 22, 2024

    The Author Email: Lei ZHU (zhuzhubutterfly@163.com)

    DOI:10.11805/tkyda2023432

    Topics