Infrared and Laser Engineering, Volume. 50, Issue 9, 20200463(2021)

Generation of optical vortex and its research progress in inertial measurement (Invited)

Chen Wang1,2, Yuan Ren1,2, Hao Wu1,2, and Song Qiu1,2
Author Affiliations
  • 1Department of Aerospace Science and Technology, Space Engineering University, Beijing 101416, China
  • 2Lab of Quantum Detection & Awareness, Space Engineering University, Beijing 101416, China
  • show less
    References(60)

    [1] [1] Gbur G. Singular Optics[M]. US: WileyVCH Verlag GmbH & Co., 2015.

    [2] [2] Bn M, Wolf E. Principles of Optics: Electromagic They of Propagation, Interference Diffraction of Light [M]. 7th ed. Britain: Pergamon Press, 1999.

    [3] H Wolter. Concerning the path of light upon total reflection. Journal of Optics A Pure & Applied Optics, 11, 090401(2009).

    [4] [4] Braunbek W, Laukien G. Features of refraction by a semiplane[J]. Optik, 1952, 9: 174179.

    [5] P Coullet, L Gil, F Rocca. Optical vortices. Optics Communications, 73, 403-408(1989).

    [6] L Allen, M W Beijersbergen, R J C Spreeuw, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Physical Review A, 45, 8185-8189(1992).

    [7] S M Barnett, L Allen. Orbital angular momentum and nonparaxial light beams. Optics Communications, 110, 670-678(1994).

    [8] Y Q Zhang, X Y Zeng, L Ma, et al. Manipulation for superposition of orbital angular momentum states in surface plasmon polaritons. Advanced Optical Materials, 7, 1900372(2019).

    [9] W Yang, X Qiu, L Chen. Research progress in detection, imaging, sensing, and micromanipulation application of orbital angular momentum of beams. Chinese Journal of Lasers, 47, 0500013(2020).

    [10] Jian Wang, Jun Liu, Yifan Zhao. Research progress of structured light coding/decoding communications. Acta Optica Sinica, 39, 0126013(2019).

    [11] Y L Gu, G Gbur. Measurement of atmospheric turbulence strength by vortex beam. Opt Commun, 283, 1209-1212(2010).

    [12] W Zhang, D Zhang, X Qiu, et al. Quantum remote sensing of the angular rotation of structured objects. Physical Review A, 100, 043832(2019).

    [13] M P J Lavery, C Peuntinger, K Günthneret, et al. Free-space propagation of high-dimensional structured optical fields in an urban environment. Science Advances, 3, e1700552(2017).

    [14] Zhongsheng Man, Zheng Xi, Xiaocong Yuan, et al. Dual coaxial longitudinal polarization vortex structures. Physical Review Letters, 124, 103901(2020).

    [15] Y Shen, X Wang, Z Xie, et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light: Science & Applications, 8, 90(2019).

    [16] M W Beijersbergen, L Allen, H E L O Veen, et al. Astigmatic laser mode converters and transfer of orbital angular momentum. Optics Communications, 96, 123-132(1993).

    [17] G Liang, Q Wang. Controllable conversion between Hermite Gaussian and Laguerre Gaussian modes due to cross phase. Opt Express, 27, 10684-10691(2019).

    [18] C Wang, Y Ren, T Liu, et al. Generation and measurement of high-order optical vortices by using the cross phase. Applied Optics, 59, 4040(2020).

    [19] Y Ren, C Wang, T Liu, et al. Polygonal shaping and multi-singularity manipulation of optical vortices via high-order cross-phase. Opt Express, 28, 26257-26266(2020).

    [20] C Wang, Y Ren, T Liu, et al. New kind of Hermite–Gaussian-like optical vortex generated by cross phase. Chinese Optics Letters, 18, 100501(2020).

    [21] Jingtao Xin, Kai Li, Wen Zhang, et al. Generation of vector beams by Sagnac interferometer and spiral phase plates. Infrared and Laser Engineering, 46, 0217001(2017).

    [22] C Wang, T Liu, Y Ren, et al. Generating optical vortex with large topological charges by spiral phase plates in cascaded and double-pass configuration. Optik, 171, 404-412(2018).

    [23] [23] Wang Chen, Liu Tong, Shao Qiongling, et al. Quadrupling topological ges of vtex using multipassed spiral phase plate[J]. Infrared Laser Engineering, 2018, 47(9): 0918008. (in Chinese)

    [24] E U Wagemann, H J Tiziani, M Reicherter, et al. Optical particle trapping with computer-generated holograms written on a liquid-crystal display. Optics Letters, 24, 608(1999).

    [25] D Ganic, M Hain, M Gu, et al. Generation of doughnut laser beams by use of a liquid-crystal cell with a conversion efficiency near 100%. Optics Letters, 27, 1351(2002).

    [26] Lixiang Chen, Yuanying Zhang. Research progress on preparation, manipulation, and remote sensing applications of high-order orbital angular momentum of photons. Acta Physica Sinica, 64, 164210(2015).

    [27] S Takashima, H Kobayashi, K Iwashita. Integer multiplier for the orbital angular momentum of light using a circular-sector transformation. Physical Review A, 100, 063822(2019).

    [28] T W Clark, R F Offer, S Franke-Arnold, et al. Comparison of beam generation techniques using a phase only spatial light modulator. Opt Express, 24, 6249-6264(2016).

    [29] [29] Weng X, Liu L, Sui G, et al. Realtime pixellevel polarization modulation using polarizedspatial light modulat based on phase vectization [J]. arXiv eprints, 2020: 2004.00446.

    [30] Y He, Z Liu, Y Liu, et al. Higher-order laser mode converters with dielectric metasurfaces. Optics Letters, 40, 5506(2015).

    [31] [31] Yang Weidong, Qiu Xiaodong, Chen Lixiang. Research progress in detection, imaging, sensing, micromanipulation application of bital angular momentum of beams[J]. Chinese Journal of Lasers, 2020, 47(5): 0500013. (in Chinese)

    [32] [32] Wang Chen, Liu Tong, Shao Qiongling, et al. Method research of optical vtex generation based on sagnac interferometer[J]. Acta Photonica Sinica, 2018, 47(3): 326002. (in Chinese)

    [33] Z Ji, W Liu, S Krylyuk, et al. Photocurrent detection of the orbital angular momentum of light. Science, 368, 763-767(2020).

    [34] Q Liu, J Pan, Z Wan, et al. Generation methods for complex vortex structured light field. Chinese Journal of Lasers, 47, 0500006(2020).

    [35] B A Garetz, S Arnold. Variable frequency shifting of circularly polarized laser radiation via a rotating half-wave retardation plate. Optics Communications, 31, 1-3(1979).

    [36] B A Garetz. Angular Doppler effect. J Opt Soc Am A, 71, 609-611(1981).

    [37] [37] Bart S M, Zambrini R. bital Angular Momentum of Light [M]. New Yk: Springer, 2007: 277311.

    [38] M Padgett. A new twist on the Doppler shift. Physics Today, 67, 58-59(2014).

    [39] A Belmonte, J P Torres. Optical Doppler shift with structured light. Opt Lett, 36, 4437-4439(2011).

    [40] M P Lavery, F C Speirits, S M Barnett, et al. Detection of a spinning object using light's orbital angular momentum. Science, 341, 537-540(2013).

    [41] F C Speirits, M P J Lavery, M J Padgett, et al. Observation of the rotational Doppler shift of a white-light, orbital-angular-momentum-carrying beam backscattered from a rotating body. Optica, 1, 1-4(2014).

    [42] C Rosales-Guzmán, N Hermosa, A Belmonte, et al. Direction-sensitive transverse velocity measurement by phase-modulated structured light beams. Optics Letters, 39, 5415-5418(2014).

    [43] M P L D B Phillips, F C Speirits, S M Barnett, et al. Rotational Doppler velocimetry to probe the angular velocity of spinning microparticles. Physical Review, 90, 011801(2014).

    [44] S Fu, C Gao, T Wang, et al. Non-diffractive Bessel-Gauss beams for the detection of rotating object free of obstructions. Opt Express, 25, 20098-20108(2017).

    [45] W Zhang, J Gao, D Zhang, et al. Free-space remote sensing of rotation at the photon-counting level. Phys Rev A, 10, 044014(2018).

    [46] S Qiu, T Liu, Z Li, et al. Influence of lateral misalignment on the optical rotational Doppler effect. Appl Opt, 58, 2650-2655(2019).

    [47] S Qiu, T Liu, Y Ren, et al. Detection of spinning objects at oblique light incidence using the optical rotational Doppler effect. Optics Express, 27, 24781-24792(2019).

    [48] Z Zhang, L Cen, J Zhang, et al. Rotation velocity detection with orbital angular momentum light spot completely deviated out of the rotation center. Opt Express, 28, 6859-6867(2020).

    [49] A Q Anderson, E F Strong, B M Heffernan, et al. Detection technique effect on rotational Doppler measurements. Opt Lett, 45, 2636-2639(2020).

    [50] [50] Yu T, Xia H, Fan Z, et al. Study on the influence of phase noise on coherent beam combined BesselGaussian beam[J]. Optics Communications, 2019, 436: 1420.

    [51] E Hodby, S A Hopkins, G Hechenblaikner, et al. Experimental observation of a superfluid gyroscope in a dilute Bose-Einstein condensate. Phys Rev Lett, 91, 090403(2003).

    [52] S Thanvanthri, K T Kapale, J P Dowling. Ultra-stable matter-wave gyroscopy with counter-rotating vortex superpositions in Bose–Einstein condensates. Journal of Modern Optics, 59, 1180-1185(2012).

    [53] F I Moxley, J P Dowling, W Dai, et al. Sagnac interferometry with coherent vortex superposition states in exciton-polariton condensates. Physical Review A, 93, 053603(2016).

    [54] D G Lidzey, D D C Bradley, M S Skolnick, et al. Strong exciton–photon coupling in an organic semiconductor microcavity. Nature, 395, 53-55(1998).

    [55] K S Daskalakis, S A Maier, S Kena-Cohen. Spatial coherence and stability in a disordered organic polariton condensate. Physical Review Letters, 115, 5301(2015).

    [56] [56] Ren Yuan, Cheng Rui, Xie Lu, et al. Waveparticle vtex gyro: China, ZL201610318157.8[P]. 20160512.

    [57] [57] Ren Yuan, Wang Gang, Xie Lu, et al. Vtex optical circulat: China, ZL201610319453. X [P]. 20160512.

    [58] Haijun Chen, Yuan Ren, Hua Wang. The dynamics of a matter-wave soliton under the effect of a two-dimensional constant external force field. Physica Scripta, 94, 115221(2019).

    [59] [59] Wu H, Ren Y, Liu T, et al. Research on rotational dynamics acteristics of planar superimposed vtexes of exciton polariton condensates[J]. Acta Phys Sin, 2020, 69(23): 230303.

    [60] [60] Moxley F I, Dowling J P, Dai W, et al. Sagnac interferometry with coherent vtex superposition states in excitonpolariton condensates[J]. Physical Review A, 2016, 93(5): 053603 .

    CLP Journals

    [1] Yuan Ren, Hao Wu, Chen Wang, Zhengliang Liu, Tong Liu, Zhenyu Xiong. Simulation analysis of some key parameters of quantum vortex gyroscope (Invited)[J]. Infrared and Laser Engineering, 2022, 51(4): 20220004

    Tools

    Get Citation

    Copy Citation Text

    Chen Wang, Yuan Ren, Hao Wu, Song Qiu. Generation of optical vortex and its research progress in inertial measurement (Invited)[J]. Infrared and Laser Engineering, 2021, 50(9): 20200463

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Special issue-Manipulation on optical vortex and its sensing application

    Received: Nov. 10, 2020

    Accepted: --

    Published Online: Oct. 28, 2021

    The Author Email:

    DOI:10.3788/IRLA20200463

    Topics