Journal of the Chinese Ceramic Society, Volume. 50, Issue 7, 1875(2022)
Preparation and Lithium Storage Properties of Low Cost Silicon Nanotube/Carbon Composites
[1] [1] LIN L D, XU X N, CHU C X, et al. Mesoporous amorphous silicon: A simple synthesis of a high-rate and long-life anode material for lithium-ion batteries[J]. Angew Chem Int Ed, 2016, 55(45): 14063-14066.
[3] [3] LIU N, WU H, MCDOWELL M T, et al. A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes[J]. Nano Lett, 2012, 12(6): 3315-3321.
[4] [4] CHOI S, KWON T W, COSKUN A, et al. Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries[J]. Science, 2017, 357: 279-283.
[5] [5] WANG M S, FAN L Z, HUANG M, et al. Conversion of diatomite to porous Si/C composites as promising anode materials for lithium-ion batteries[J]. J Power Sources, 2012, 219: 29-35.
[6] [6] MIAO R, YANG J, WU Y N, et al.Nanoporous silicon from low-cost natural clinoptilolite for lithium storage[J]. RSC Adv, 2015, 5(70): 56772-56779.
[7] [7] RYU J, HONG D, ChOI S, et al. Synthesis of ultrathin Si nanosheets from natural clays for lithium-ion battery anodes[J]. ACS Nano, 2016, 10(2): 2843.
[8] [8] LIN N, HAN Y, ZHOU J, et al. A low temperature molten salt process for aluminothermic reduction of silicon oxides to crystalline Si for Li-ion batteries[J]. Energy Environ Sci, 2015, 8(11): 3187-3191.
[10] [10] JUNG Y S, LEE K T, OH S M. Si-carbon core-shell composite anode in lithium secondary batteries[J]. Electrochim Acta, 2007, 52(24): 7061-7067.
[11] [11] MA Y, TANG H, ZHANG Y, et al. Facile synthesis of Si-C nanocomposites with yolk-shell structure as an anode for lithium-ion batteries[J]. J Alloy Compd, 2017, 704: 599-606.
[12] [12] MISHRA K, ZHENG J, PATEL R, et al. High performance porous Si@C anodes synthesized by low temperature aluminothermic reaction[J]. Electrochim Acta, 2018, 269: 509-516.
[13] [13] FURQUAN M, KHATRIBAIL A R, VIJAYALAKSHMI S, et al. Efficient conversion of sand to nano-silicon and its energetic Si-C composite anode design for high volumetric capacity lithium-ion battery[J]. J Power Sources, 2018, 382(1): 56-68.
[14] [14] LIU N, LU Z, ZHAO J, et al. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes[J]. Nat Nanotechnol, 2014, 9(3): 187-192.
[15] [15] RUTTERT M, HOLTSTIEGE F, HUSKER J, et al. Hydrothermal-derived carbon as a stabilizing matrix for improved cycling performance of silicon-based anodes for lithium-ion full cells[J]. Beilstein J Nanotech, 2018, 9: 2381-2395.
[16] [16] JIANG Y, CHEN S, MU D, et al. A three-dimensional network structure Si/C anode for Li-ion batteries[J]. J Mater Sci, 2017, 52: 10950-10958.
[17] [17] HU L, LUO B, WU C,et al. Yolk-shell Si/C composites with multiple Si nanoparticles encapsulated into double carbon shells as lithium-ion battery anodes[J]. J Energy Chem, 2019, 32: 124-130.
[18] [18] ZHOU Z, LONG P, LIU Y, et al. From sand to fast and stable silicon anode: Synthesis of hollow Si@void@C yolk-shell microspheres by aluminothermic reduction for lithium storage[J]. Chin Chem Lett, 2019, 30(3): 610-617.
Get Citation
Copy Citation Text
YANG Shaobin, ZHAO Lingmin, ZHAO Mingyuan, DONG Wei. Preparation and Lithium Storage Properties of Low Cost Silicon Nanotube/Carbon Composites[J]. Journal of the Chinese Ceramic Society, 2022, 50(7): 1875
Category:
Received: Nov. 8, 2021
Accepted: --
Published Online: Dec. 6, 2022
The Author Email: Shaobin YANG (lgdysb@163.com)
CSTR:32186.14.