Journal of Innovative Optical Health Sciences, Volume. 10, Issue 3, 1750008(2017)
Cell counting for in vivo flow cytometry signals with baseline drift
[1] [1] E. I. Galanzha, M. G. Viegas, T. I. Malinsky, A. V. Melerzanov, M. A. Juratli, M. Sarimollaoglu, D. A. Nedosekin, V. P. Zharov, “ In vivo acoustic and photoacoustic focusing of circulating cells,” Sci. Rep. 6, 21531 (2016).
[2] [2] E. I. Galanzha, E. V. Shashkov, P. M. Spring, J. Y. Suen, V. P. Zharov, “In vivo, noninvasive, label-free detection and eradication of circulating metastatic melanoma cells using two-color photoacoustic flow cytometry with a diode laser, ” Cancer Res. 69, 7926–7934 (2009).
[3] [3] Z. Fan, X. Wei, “ In vivo flow cytometry: A powerful optical technology to detect circulating tumor cells and diagnose cancer metastasis in vivo/In-vivo-Durchflusszytometrie: Ein leistungsstarkes optisches Verfahren zur Detektion zirkulierender Tumorzellen und zur In-vivo-Diagnose von Metastasen,” Photonics Lasers Med. 2, 27–35 (2013).
[4] [4] J. Novak, I. Georgakoudi, X. Wei, A. Prossin, C. Lin, “In vivo flow cytometer for real-time detection and quantification of circulating cells, ” Opt. Lett. 29, 77–79 (2004).
[5] [5] V. P. Zharov, E. I. Galanzha, V. V. Tuchin, “Photothermal image flow cytometry in vivo, ” Optics Lett. 30, 628–630 (2005).
[6] [6] V. P. Zharov, E. I. Galanzha, E. V. Shashkov, N. G. Khlebtsov, V. V. Tuchin, “ In vivo photoacoustic flow cytometry for monitoring of circulating single cancer cells and contrast agents,” Opt. Lett. 31, 3623–3625 (2006).
[7] [7] Y. Li, Z. Fan, J. Guo, G. Liu, X. Tan, C. Wang, Z. Gu, X. Wei, “ Circulation times of hepatocellular carcinoma cells by in vivo flow cytometry,” Chin. Opt. Lett. 8, 953–956 (2010).
[8] [8] J. Yan, Z. Fan, X. Wu, M. Xu, J. Jiang, C. Tan, W. Wu, X. Wei, J. Zhou, “ Circulating tumor cells are correlated with disease progression and treatment response in an orthotopic hepatocellular carcinoma model,” Cytometry A 87, 1020–1028 (2015).
[9] [9] I. Georgakoudi, N. Solban, J. Novak, W. L. Rice, X. Wei, T. Hasan, C. P. Lin, “In vivo flow cytometry a new method for enumerating circulating cancer cells, ” Cancer Res. 64, 5044–5047 (2004).
[10] [10] D. A. Sipkins, X. Wei, J. W. Wu, J. M. Runnels, D. Coté, T. K. Means, A. D. Luster, D. T. Scadden, C. P. Lin, “ In vivo imaging of specialized bone marrow endothelial microdomains for tumor engraftment,” Nature 435, 969–973 (2005).
[11] [11] Z.-C. Fan, J. Yan, G.-D. Liu, X.-Y. Tan, X.-F. Weng, W.-Z. Wu, J. Zhou, X.-B. Wei, “ Real-time monitoring of rare circulating hepatocellular carcinoma cells in an orthotopic model by in vivo flow cytometry assesses resection on metastasis,” Cancer Res. 72, 2683–2691 (2012).
[12] [12] X. Wei, D. A. Sipkins, C. M. Pitsillides, J. Novak, I. Georgakoudi, C. P. Lin, “ Real-time detection of circulating apoptotic cells by in vivo flow cytometry,” Mol. Imaging 4, 415 (2005).
[13] [13] Z. Fan, J. A. Spencer, Y. Lu, C. M. Pitsillides, G. Singh, P. Kim, S. H. Yun, V. Toxavidis, T. B. Strom, C. P. Lin, “In vivo tracking of ‘color-coded’ effector, natural and induced regulatory T cells in the allograft response, ” Nat. Med. 16, 718–722 (2010).
[14] [14] J. Guo, Z. Fan, Z. Gu, X. Wei, “Studying the role of macrophages in circulating prostate cancer cells by in vivo flow cytometry, ” J. Innov. Opt. Health Sci. 5, 1250027 (2012). Link, ISI,
[15] [15] Y. A. Menyaev, D. A. Nedosekin, M. Sarimollaoglu, M. A. Juratli, E. I. Galanzha, V. V. Tuchin, V. P. Zharov, “Optical clearing in photoacoustic flow cytometry, ” Biomed. Opt. Exp. 4, 3030–3041 (2013).
[16] [16] S. Lee, C. Vinegoni, P. F. Feruglio, L. Fexon, R. Gorbatov, M. Pivoravov, A. Sbarbati, M. Nahrendorf, R. Weissleder, “Real-time in vivo imaging of the beating mouse heart at microscopic resolution, ” Nat. Commun. 3, 1054 (2012).
[17] [17] M.-C. Zhong, X.-B. Wei, J.-H. Zhou, Z.-Q. Wang, Y.-M. Li, “Trapping red blood cells in living animals using optical tweezers, ” Nat. Commun. 4, 1768 (2013).
[18] [18] Z. A. Nima, M. Mahmood, Y. Xu, T. Mustafa, F. Watanabe, D. A. Nedosekin, M. A. Juratli, T. Fahmi, E. I. Galanzha, J. P. Nolan, “Circulating tumor cell identification by functionalized silver–gold nanorods with multicolor, super-enhanced SERS and photothermal resonances, ” Sci. Rep. 4, 4752 (2014).
[19] [19] M. V. Khodakovskaya, K. de Silva, D. A. Nedosekin, E. Dervishi, A. S. Biris, E. V. Shashkov, E. I. Galanzha, V. P. Zharov, “Complex genetic, photothermal, and photoacoustic analysis of nanoparticle–plant interactions, ” Proc. Natl. Acad. Sci. 108, 1028–1033 (2011).
[20] [20] J.-W. Kim, E. I. Galanzha, E. V. Shashkov, H.-M. Moon, V. P. Zharov, “Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents, ” Nat. Nanotechnol. 4, 688–694 (2009).
[21] [21] J. Shao, R. J. Griffin, E. I. Galanzha, J.-W. Kim, N. Koonce, J. Webber, T. Mustafa, A. S. Biris, D. A. Nedosekin, V. P. Zharov, “Photothermal nanodrugs: Potential of TNF-gold nanospheres for cancer theranostics, ” Sci. Rep. 3, 1293 (2013).
[22] [22] E. I. Galanzha, E. V. Shashkov, T. Kelly, J.-W. Kim, L. Yang, V. P. Zharov, “ In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumor cells,” Nat. Nanotechnol. 4, 855–860 (2009).
[23] [23] D. Damm, C. Wang, X. Wei, A. Mosig, “Cell counting for in vivo flow cytometer signals using wavelet-based dynamic peak picking, ” IEEE 2009 2nd Int. Conf. on Biomedical Engineering and Informatics, pp. 1–4, IEEE, Washington, D.C. (2009).
[24] [24] Y. Suo, T. Liu, C. Xie, D. Wei, X. Tan, L. Wu, X. Wang, H. He, G. Shi, X. Wei, “ Near infrared in vivo flow cytometry for tracking fluorescent circulating cells,” Cytometry A 87, 878–884 (2015).
[25] [25] Y. Ding, J. Wang, Z. Fan, D. Wei, R. Shi, Q. Luo, D. Zhu, X. Wei, “ Signal and depth enhancement for in vivo flow cytometer measurement of ear skin by optical clearing agents,” Biomed. Opt. Exp. 4, 2518–2526 (2013).
[26] [26] Y. Li, J. Guo, C. Wang, Z. Fan, G. Liu, C. Wang, Z. Gu, D. Damm, A. Mosig, X. Wei, “ Circulation times of prostate cancer and hepatocellular carcinoma cells by in vivo flow cytometry,” Cytometry A 79, 848–854 (2011).
[27] [27] C. D. McManus, U. Teppner, D. Neubert, S. M. Lobodzinski, “ Estimation and removal of baseline drift in the electrocardiogram,” Comput. Biomed. Res. 18, 1–9 (1985). Crossref,
[28] [28] D. Ruan, J. Fessler, J. Balter, P. Keall, “ Real-time profiling of respiratory motion: Baseline drift, frequency variation and fundamental pattern change,” Phys. Med. Biol. 54, 4777 (2009).
[29] [29] V. S. Chouhan, S. S. Mehta, “Total removal of baseline drift from ECG signal, ” Computing: Theory and Applications, 2007. ICCTA’07. Int. Conf., pp. 512–515, IEEE, USA (2007).
[30] [30] R. F. Von Borries, J. H. Pierluissi, H. Nazeran, “Wavelet transform-based ECG baseline drift removal for body surface potential mapping, ” 2005 IEEE Engineering in Medicine and Biology. 27th Ann. Conf., pp. 3891–3894, IEEE, USA (2006).
[31] [31] L. Xu, D. D. Zhang, K. Wang, “ Wavelet-based cascaded adaptive filter for removing baseline drift in pulse waveforms,” IEEE Trans. Biomed. Eng. 52, 1973–1975 (2005).
[32] [32] D. L. Donoho, “ De-noising by soft-thresholding,” IEEE Trans. Inf. Theory 41, 613–627 (1995).
Get Citation
Copy Citation Text
Xiaoling Wang, Yuanzhen Suo, Dan Wei, Hao He, Fan Wu, Xunbin We. Cell counting for in vivo flow cytometry signals with baseline drift[J]. Journal of Innovative Optical Health Sciences, 2017, 10(3): 1750008
Received: May. 15, 2016
Accepted: Jan. 24, 2017
Published Online: Dec. 27, 2018
The Author Email: We Xunbin (xwei01@sjtu.edu.cn)