Opto-Electronic Engineering, Volume. 50, Issue 12, 230181-1(2023)
Optical fiber integrated unlabeled differential super-resolution microscopic imaging system
[1] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J]. Opt Lett, 19, 780-782(1994).
[2] Gu M, Kang H, Li X P. Breaking the diffraction-limited resolution barrier in fiber-optical two-photon fluorescence endoscopy by an azimuthally-polarized beam[J]. Sci Rep, 4, 3627(2014).
[4] Luo M Y, Sun D Q, Yang Y J et al. Three-dimensional isotropic STED microscopy generated by 4π focusing of a radially polarized vortex Laguerre–Gaussian beam[J]. Opt Commun, 463, 125434(2020).
[5] Rust M J, Bates M, Zhuang X W. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)[J]. Nat Methods, 3, 793-796(2006).
[6] Kamiyama D, Huang B. Development in the STORM[J]. Dev Cell, 23, 1103-1110(2012).
[7] Betzig E, Patterson G H, Sougrat R et al. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 313, 1642-1645(2006).
[10] Heintzmann R, Cremer C G. Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating[J]. Proc SPIE, 3568, 185-196(1999).
[11] Kuang C F, Li S, Liu W et al. Breaking the diffraction barrier using fluorescence emission difference microscopy[J]. Sci Rep, 3, 1441(2013).
[12] Zhang Z J, Xu X, Wang J X et al. Review of the development of light sheet fluorescence microscopy[J]. Opto-Electron Eng, 50, 220045(2023).
[13] Xiao Y T, Chen L W, Pu M B et al. Improved spatiotemporal resolution of anti-scattering super-resolution label-free microscopy via synthetic wave 3D metalens imaging[J]. Opto-Electron Sci, 2, 230037(2003).
[14] Chen L W, Zhou Y, Wu M X et al. Remote-mode microsphere nano-imaging: new boundaries for optical microscopes[J]. Opto-Electron Adv, 1, 170001(2018).
[15] Chen X S, Du W J, Lou Z L et al. Label-free far-field subdiffraction imaging based on hyperbolic metamaterial[J]. Opto-Electron Eng, 49, 220056(2022).
[16] Kireev A N, Graf T. Vector coupled-mode theory of dielectric waveguides[J]. IEEE J Quantum Electron, 39, 866-873(2003).
[17] Volpe G, Petrov D. Generation of cylindrical vector beams with few-mode fibers excited by Laguerre–Gaussian beams[J]. Opt Commun, 237, 89-95(2004).
[18] Quabis S, Dorn R, Leuchs G. Generation of a radially polarized doughnut mode of high quality[J]. Appl Phys B, 81, 597-600(2005).
[19] Kireev A N, Graf T. Symmetric vector coupled-mode theory of dielectric waveguides[J]. Opt Commun, 244, 25-35(2005).
[20] Xiao J B, Sun X H. Full-vectorial mode solver for anisotropic optical waveguides using multidomain spectral collocation method[J]. Opt Commun, 283, 2835-2840(2010).
[21] Luo H, Wang G R, Yuan L B. A special three-layer step-index fiber for building compact STED systems[J]. Sci Rep, 9, 8455(2019).
[22] Zou J H, Wang H J, Li W W et al. Visible-wavelength all-fiber vortex laser[J]. IEEE Photonics Technol Lett, 31, 1487-1490(2019).
[23] Zhang W D, Huang L G, Wei K Y et al. High-order optical vortex generation in a few-mode fiber via cascaded acoustically driven vector mode conversion[J]. Opt Lett, 41, 5082-5085(2016).
[24] Yan L, Kristensen P, Ramachandran S. Vortex fibers for STED microscopy[J]. APL Photonics, 4, 022903(2019).
Get Citation
Copy Citation Text
Hao Luo, Mengdie Hou, Liang Xu, Zhenyao Yang, Cuifang Kuang, Xianglong Zeng, Dazhao Zhu. Optical fiber integrated unlabeled differential super-resolution microscopic imaging system[J]. Opto-Electronic Engineering, 2023, 50(12): 230181-1
Category: Article
Received: Jul. 20, 2023
Accepted: Nov. 13, 2023
Published Online: Mar. 26, 2024
The Author Email: Cuifang Kuang (匡翠方), Xianglong Zeng (曾祥龙), Dazhao Zhu (朱大钊)