Acta Photonica Sinica, Volume. 53, Issue 5, 0553108(2024)
Optical Microcavity Magnetic Sensors(Invited)
[1] N ZHAO, J HONERT, B SCHMID et al. Sensing single remote nuclear spins. Nature Nanotechnology, 7, 657-662(2012).
[2] T DELORD, P HUILLERY, L NICOLAS et al. Spin-cooling of the motion of a trapped diamond. Nature, 580, 56-59(2020).
[3] H KAVIANI, R GHOBADI, B BEHERA et al. Optomechanical detection of light with orbital angular momentum. Optics Express, 28, 15482-15496(2020).
[4] M S SAFRONOVA, D BUDKER, D DEMILLE et al. Search for new physics with atoms and molecules. Reviews of Modern Physics, 90, 025008(2018).
[5] H XIA, A BEN-AMAR BARANGA, D HOFFMAN et al. Magnetoencephalography with an atomic magnetometer. Applied Physics Letters, 89, 211104(2006).
[6] F PIZZO, N ROEHRI, S MEDINA VILLALON et al. Deep brain activities can be detected with magnetoencephalography. Nature Communications, 10, 971(2019).
[7] E BOTO, N HOLMES, J LEGGETT et al. Moving magnetoencephalography towards real-world applications with a wearable system. Nature, 555, 657-661(2018).
[8] W XIAO, C SUN, L SHEN et al. A movable unshielded magnetocardiography system. Science Advances, 9, 1746(2023).
[9] P RIPKA, M JANOSEK. Advances in magnetic field sensors. IEEE Sensors Journal, 10, 1108-1116(2010).
[10] Y LI, Y QIAO, Z TONG et al. Nondestructive inspection and imaging of magnetic hydrogel using the alternating magnetic field infrared thermography. Infrared Physics & Technology, 131, 104681(2023).
[11] A EDELSTEIN. Advances in magnetometry. Journal of Physics: Condensed Matter, 19, 165217(2007).
[12] A KHAJEH AMIRI HAGH, S J ASHTIANI, A A SHAYEGANI AKMAL. A wideband, sensitive current sensor employing transimpedance amplifier as interface to Rogowski coil. Sensors and Actuators A: Physical, 256, 43-50(2017).
[13] J D LOPEZ, A DANTE, A O CREMONEZI et al. Fiber-optic current sensor based on FBG and terfenol-D with magnetic flux concentration for enhanced sensitivity and linearity. IEEE Sensors Journal, 20, 3572-3578(2020).
[14] G Y CHEN, T P NEWSON. Detection bandwidth of fibre-optic current sensors based on Faraday effect. Electronics Letters, 50, 626-627(2014).
[15] E XIN, H YUAN. Development of a sensor for corona current measurement under high-voltage direct-current transmission lines. International Journal of Distributed Sensor Networks, 12, 1550147716664243(2016).
[16] H YUAN, Q YANG, Y LIU et al. Development and application of high-frequency sensor for corona current measurement under ultra high-voltage direct-current environment. IEEE Transactions on Instrumentation and Measurement, 61, 1064-1071(2012).
[17] S FORSTNER, S PRAMS, J KNITTEL et al. Cavity optomechanical magnetometer. Physical Review Letters, 108, 120801(2012).
[18] C H DONG, Z SHEN, C L ZOU et al. Brillouin-scattering-induced transparency and non-reciprocal light storage. Nature Communications, 6, 6193(2015).
[19] X ZHANG, Q T CAO, Z WANG et al. Symmetry-breaking-induced nonlinear optics at a microcavity surface. Nature Photonics, 13, 21-24(2019).
[20] Z SHEN, Y L ZHANG, Y CHEN et al. Experimental realization of optomechanically induced non-reciprocity. Nature Photonics, 10, 657-661(2016).
[21] Z SHEN, G T XU, M ZHANG et al. Coherent coupling between phonons, magnons, and photons. Physical Review Letters, 129, 243601(2022).
[22] Z SHEN, Y L ZHANG, C L ZOU et al. Dissipatively controlled optomechanical interaction via cascaded photon-phonon coupling. Physical Review Letters, 126, 163604(2021).
[23] B B LI, OU L , Y LEI et al. Cavity optomechanical sensing. Nanophotonics, 10, 2799-2832(2021).
[24] X JIANG, A J QAVI, S H HUANG et al. Whispering-gallery sensors. Matter, 3, 371-392(2020).
[25] H YANG, X CAO, Z G HU et al. Micropascal-sensitivity ultrasound sensors based on optical microcavities. Photonics Research, 11, 1139-1147(2023).
[26] D Q YANG, J CHEN, Q T CAO et al. Operando monitoring transition dynamics of responsive polymer using optofluidic microcavities. Light: Science & Applications, 10, 128(2021).
[27] X MA, Z CAI, C ZHUANG et al. Integrated microcavity electric field sensors using Pound-Drever-Hall detection. Nature Communications, 15, 1386(2024).
[28] M NIE, B LI, K JIA et al. Dissipative soliton generation and real-time dynamics in microresonator-filtered fiber lasers. Light: Science & Applications, 11, 296(2022).
[29] L YAO, P LIU, H J CHEN et al. Soliton microwave oscillators using oversized billion Q optical microresonators. Optica, 9, 561-564(2022).
[30] H ZHANG, T TAN, H J CHEN et al. Soliton microcombs multiplexing using intracavity-stimulated brillouin lasers. Physical Review Letters, 130, 153802(2023).
[31] C LAO, X JIN, L CHANG et al. Quantum decoherence of dark pulses in optical microresonators. Nature Communications, 14, 1802(2023).
[32] Y LEI, Z G HU, M WANG et al. Fully reconfigurable optomechanical add-drop filters. Applied Physics Letters, 121, 121, 181110(2022).
[33] M NIE, J MUSGRAVE, K JIA et al. Turnkey photonic flywheel in a microresonator-filtered laser. Nature Communications, 15, 55(2024).
[34] C MA, C WANG, Y PI et al. Fast-reconfigurable frequency comb generation based on AlGaAsOI waveguide with electro-optic time lens. Communications Physics, 7, 1-8(2024).
[35] M ZHANG, S DING, X LI et al. Strong interactions between solitons and background light in Brillouin-Kerr microcombs. Nature Communications, 15, 1661(2024).
[36] B SHEN, H SHU, W XIE et al. Harnessing microcomb-based parallel chaos for random number generation and optical decision making. Nature Communications, 14, 4590(2023).
[37] C J HOOD, T W LYNN, A C DOHERTY et al. The atom-cavity microscope: single atoms bound in orbit by single photons. Science, 287, 1447-1453(2000).
[38] N WU, K CUI, Q XU et al. On-chip mechanical exceptional points based on an optomechanical zipper cavity. Science Advances, 9, 8892(2023).
[39] E VERHAGEN, S DELÉGLISE, S WEIS et al. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode. Nature, 482, 63-67(2012).
[40] H LEE, T CHEN, J LI et al. Chemically etched ultrahigh-Q wedge-resonator on a silicon chip. Nature Photonics, 6, 369-373(2012).
[41] Q XU, B SCHMIDT, S PRADHAN et al. Micrometre-scale silicon electro-optic modulator. Nature, 435, 325-327(2005).
[42] F BUCHOLTZ, D M DAGENAIS, K P KOO. High-frequency fibre-optic magnetometer with 70 fT/√(Hz) resolution. Electronics Letters, 25, 1719-1721(1989).
[43] S FORSTNER. Ultrasensitive optomechanical magnetometry. Advanced Materials, 26, 6348-6353(2014).
[44] B B LI, G BRAWLEY, H GREENALL et al. Ultrabroadband and sensitive cavity optomechanical magnetometry. Photonics Research, 8, 1064-1071(2020).
[45] B B LI, D BULLA, V PRAKASH et al. Invited Article: Scalable high-sensitivity optomechanical magnetometers on a chip. APL Photonics, 3, 120806(2018).
[46] Y YU, S FORSTNER, H RUBINSZTEIN-DUNLOP et al. Modelling of cavity optomechanical magnetometers. Sensors, 18, 1558(2018).
[47] Z G HU, Y M GAO, J F LIU et al. Picotesla-sensitivity microcavity optomechanical magnetometry(2024).
[48] J ZHU, G ZHAO, I SAVUKOV et al. Polymer encapsulated microcavity optomechanical magnetometer. Scientific Reports, 7, 8896(2017).
[49] F GOTARDO, B J CAREY, H GREENALL et al. Waveguide-integrated chip-scale optomechanical magnetometer. Optics Express, 31, 37663-37672(2023).
[50] C YU, J JANOUSEK, E SHERIDAN et al. Optomechanical magnetometry with a macroscopic resonator. Physical Review Applied, 5, 044007(2016).
[51] G T XU, Z SHEN, Y WANG et al. Optomechanical magnetometry on a bubble resonator with YIG microsphere. IEEE Photonics Technology Letters, 35, 393-396(2023).
[52] M WU, N L Y WU, T FIRDOUS et al. Nanocavity optomechanical torque magnetometry and radiofrequency susceptometry. Nature Nanotechnology, 12, 127-131(2017).
[53] P H KIM, B D HAUER, T J CLARK et al. Magnetic actuation and feedback cooling of a cavity optomechanical torque sensor. Nature Communications, 8, 1355(2017).
[54] P H KIM, B D HAUER, C DOOLIN et al. Approaching the standard quantum limit of mechanical torque sensing. Nature Communications, 7, 13165(2016).
[55] J WU, Y MIAO, B SONG et al. Low temperature sensitive intensity-interrogated magnetic field sensor based on modal interference in thin-core fiber and magnetic fluid. Applied Physics Letters, 104, 252402(2014).
[56] L ZHU, N ZHAO, Q LIN et al. Optical fiber SPR magnetic field sensor based on photonic crystal fiber with the magnetic fluid as cladding. Measurement Science and Technology, 32, 075106(2021).
[57] X LI, H DING. All-fiber magnetic-field sensor based on microfiber knot resonator and magnetic fluid. Optics Letters, 37, 5187-5189(2012).
[58] R Q LV, Y ZHAO, D WANG et al. Magnetic fluid-filled optical Fiber Fabry-Pérot sensor for magnetic field measurement. IEEE Photonics Technology Letters, 26, 217-219(2014).
[59] J XIA, F WANG, H LUO et al. A magnetic field sensor based on a magnetic fluid-filled FP-FBG structure. Sensors, 16, 620(2016).
[60] Y ZHAO, X X WANG, R Q LV et al. Highly sensitive reflective fabry-perot magnetic field sensor using magnetic fluid based on vernier effect. IEEE Transactions on Instrumentation and Measurement, 70, 7000808(2021).
[61] S ZHU, S LEI, N LIU et al. Magnetic field sensing using magnetic-fluid-filled optofluidic ring resonator. Microfluid Nanofluid, 21, 1-6(2017).
[62] Xingyun ZHAO, Jien SONG, Bing DUAN et al. Research on magnetic field sensing based on whispering gallery modes microbubble resonator. SCIENCE CHINA Physics, Mechanics & Astronomy, 53, 114208(2023).
[63] J LOU, R E INSIGNARES, Z CAI et al. Soft magnetism, magnetostriction, and microwave properties of FeGaB thin films. Applied Physics Letters, 91, 182504(2007).
[64] C DONG, M LI, X LIANG et al. Characterization of magnetomechanical properties in FeGaB thin films. Applied Physics Letters, 113, 262401(2018).
[65] J LOU, M LIU, D REED et al. Giant electric field tuning of magnetism in novel multiferroic FeGaB/Lead Zinc Niobate-Lead Titanate (PZN-PT) Heterostructures. Advanced Materials, 21, 4711-4715(2009).
[66] W C GRIFFITH, R JIMENEZ-MARTINEZ, V SHAH et al. Miniature atomic magnetometer integrated with flux concentrators. Applied Physics Letters, 94, 023502(2009).
[67] I FESCENKO, A JARMOLA, I SAVUKOV et al. Diamond magnetometer enhanced by ferrite flux concentrators. Physical Review Research, 2, 023394(2020).
[68] M F COLOMBANO, G ARREGUI, F BONELL et al. Ferromagnetic resonance assisted optomechanical magnetometer. Physical Review Letters, 125, 147201(2020).
[69] M ASPELMEYER, T J KIPPENBERG, F MARQUARDT. Cavity optomechanics. Reviews of Modern Physics, 86, 1391-1452(2014).
[70] B B LI, J BÍLEK, U B HOFF et al. Quantum enhanced optomechanical magnetometry. Optica, 5, 850(2018).
[71] Y XIA, A R AGRAWAL, C M PLUCHAR et al. Entanglement-enhanced optomechanical sensing. Nature Photonics, 17, 470-477(2023).
[72] A WICKENBROCK, S JURGILAS, DOW A et al. Magnetic induction tomography using an all-optical ^87Rb atomic magnetometer. Optics Letters, 39, 6367(2014).
[73] M ZOLGHARNI, H GRIFFITHS, P D LEDGER. Frequency-difference MIT imaging of cerebral haemorrhage with a hemispherical coil array: numerical modelling. Physiological Measurement, 31, S111(2010).
[74] C WANG, X CHEN, J OUYANG et al. Pulse current of multi-needle negative corona discharge and its electromagnetic radiation characteristics. Energies, 11, 3120(2018).
[75] P WANG, G ZHANG. The measurement method for corona discharge current under high-voltage environment. IEEE Transactions on Instrumentation and Measurement, 57, 1786-1790(2008).
Get Citation
Copy Citation Text
Jianfei LIU, Zhigang HU, Yimeng GAO, Beibei LI. Optical Microcavity Magnetic Sensors(Invited)[J]. Acta Photonica Sinica, 2024, 53(5): 0553108
Category: Special Issue for Microcavity Photonics
Received: Mar. 10, 2024
Accepted: May. 8, 2024
Published Online: Jun. 20, 2024
The Author Email: LI Beibei (libeibei@iphy.ac.cn)