Acta Photonica Sinica, Volume. 48, Issue 2, 201001(2019)
Feasibility of Satellite-borne Wind Observations of Stratosphere and Mesosphere Based on the Emission Line O19P18 of O2(a1Δg)
[1] [1] DABAS A. Observing the atmospheric wind from space[J]. Comptes Rendus Geoscience, 2010, 342(4-5): 370-379.
[2] [2] SHEPHERD G G. Development of wind measurement systems for future space missions[J]. Acta Astronaut, 2015, 115: 206-217.
[3] [3] SHEPHERD G G, THUILLIER G, CHO Y M, et al. The Wind Imaging Interferometer (WINDII) on the upper atmosphere research satellite: A20 year perspective[J]. Reviews of Geophysics, 2012, 50(2): 713-723.
[4] [4] KILLEEN T L, WU Q, SOLOMON S C, et al. TIMED Doppler interferometer: overview and recent results[J]. Journal of Geophysical Research, 2006,111: A10S01.
[5] [5] HARLANDER J M, ENGLERT C R, BROWN C M, et al. The as-built performance of the MIGHTI interferometers[C]. Light, Energy and the Environment Congress, OSA, 2016: FTh4B.
[6] [6] WARD W E, GAULT W A, SHEPHERD G G, et al.The waves michelson interferometer: avisible/near-IR interferometer for observing middle atmosphere dynamics and constituents [C].SPIE, 2001,4540: 100-111.
[7] [7] SHEPHERD G G, MCDADE I C, GAULTL W A, et al. The stratospheric wind interferometer for transport studies (SWIFT)[J]. Advances in Space Research, 2001,27(6): 1071-1079.
[8] [8] YEE J H, DEMAJISTRE R, MORGAN F. The O2(b1Σ) day-glow emissions: application to middle and upper-atmosphere remote sensing[J]. Canadian Journal of Physics, 2012, 90: 769-784.
[9] [9] ABREU V J, BUCHOLTZ A, HAYS P B, et al. Absorption and emission line-shapes in the O2 atmospheric bands: theoretical model and limb viewing simulations[J]. Applied Optics, 1989, 28(11): 2128-2137.
[10] [10] MLYNCZAK M, MORGAN G F, YEE J H, et al. Simultaneous measurements of the O2(a1Δ) and O2(b1Σ) airglows and ozone in the daytime mesosphere[J]. Geophysical Research Letters, 2001, 28(6): 999-1002.
[11] [11] WU K J, FU D, FENG Y T, et al. Simulation and application of the emission line O19P18 of O2(a1Δg) dayglow near 1.27 μm for wind observations from limb-viewing satellites[J]. Optics Express,2018, 26(13): 16984-16999.
[12] [12] YANKOVSKY V A, MARTYSHENKO K V, MANUILOVA R O, et al. Oxygen dayglow emissions asproxies for atomic oxygen and ozone in the mesosphere and lower thermosphere[J]. Journal of Molecular Spectroscopy, 2016, 327: 209-231.
[13] [13] SHARP W E, ZACCHEO T S, BROWELL E V, et al. Impact of ambientO2(a1Δg) on satellite-based laser remote sensing of O2 columns using absorption lines in the 1.27 μm region[J]. Journal of Geophysical Research, 2014,119(12): 7757-7772.
[14] [14] MLYNCZAK M G, SOLOMON S, ZARAS D S, et al. An updated model for O2(a1Δg) concentrations in themesosphere and lower thermosphere and implications for remote-sensing of Ozone at 1.27 μm[J]. Journal of Geophysical Research, 1993, 98(D10): 18639-18648.
[15] [15] ENGLERT C R, BABCOCK D D, HARLANDERJ M. Doppler asymmetric spatial heterodyne spectroscopy(DASH): concept and experimental demonstration [J]. Applied Optics 2007,46(29): 7297-7307.
[16] [16] HARDING B J, MAKELA J J, ENGLERT C R, et al.The MIGHTI wind retrieval algorithm: description and verification[J]. Space Science Reviews, 2017, 212(1-2): 585-600.
Get Citation
Copy Citation Text
FENG Yu-tao, WU Kui-jun, FU Di, HAO Xiong-bo, WU Jun-qiang, FU Jian-guo, HU Bing-liang. Feasibility of Satellite-borne Wind Observations of Stratosphere and Mesosphere Based on the Emission Line O19P18 of O2(a1Δg)[J]. Acta Photonica Sinica, 2019, 48(2): 201001
Received: Oct. 9, 2018
Accepted: --
Published Online: Mar. 23, 2019
The Author Email: Yu-tao FENG (fytciom@126.com)