Opto-Electronic Engineering, Volume. 47, Issue 6, 190190(2020)

A method of designing new Bessel beam generator

Dai Chengwei1...2,*, Yan Chao1,2, Zeng Qingyu1,2, Li Xiong1,2, Guo Yinghui1,2, Pu Mingbo1,2, WangChangtao1,2, and Luo Xiangang12 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(40)

    [1] [1] Durnin J. Exact solutions for nondiffracting beams. I. The scalar theory[J]. Journal of the Optical Society of America A, 1987, 4(4): 651–654.

              Durnin J. Exact solutions for nondiffracting beams. I. The scalar theory[J]. Journal of the Optical Society of America A, 1987, 4(4): 651–654.

    [2] [2] Moreno I, Davis J A, Sánchez-Lpez M M, et al. Nondiffracting Bessel beams with polarization state that varies with propaga-tion distance[J]. Optics Letters, 2015, 40(23): 5451–5454.

              Moreno I, Davis J A, Sánchez-Lpez M M, et al. Nondiffracting Bessel beams with polarization state that varies with propaga-tion distance[J]. Optics Letters, 2015, 40(23): 5451–5454.

    [3] [3] Bliokh K Y, Rodríguez-Fortu F J, Nori F, et al. Spin–orbit inte-ractions of light[J]. Nature Photonics, 2015, 9(12): 796–808.

              Bliokh K Y, Rodríguez-Fortu F J, Nori F, et al. Spin–orbit inte-ractions of light[J]. Nature Photonics, 2015, 9(12): 796–808.

    [4] [4] Yu N F, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333–337.

              Yu N F, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333–337.

    [5] [5] Pu M B, Zhao Z Y, Wang Y Q, et al. Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shap-ing[J]. Scientific Reports, 2015, 5: 9822.

              Pu M B, Zhao Z Y, Wang Y Q, et al. Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shap-ing[J]. Scientific Reports, 2015, 5: 9822.

    [6] [6] Li X, Chen LW, Li Y, et al. Multicolor 3D meta-holography by broadband plasmonic modulation[J]. Science Advances, 2016, 2(11): e1601102.

              Li X, Chen LW, Li Y, et al. Multicolor 3D meta-holography by broadband plasmonic modulation[J]. Science Advances, 2016, 2(11): e1601102.

    [7] [7] Schurig D, Mock J J, Justice B J, et al. Metamaterial electro-magnetic cloak at microwave frequencies[J]. Science, 2006, 314(5801): 977–980.

              Schurig D, Mock J J, Justice B J, et al. Metamaterial electro-magnetic cloak at microwave frequencies[J]. Science, 2006, 314(5801): 977–980.

    [8] [8] Zhang J, Mei Z L, Zhang W R, et al. An ultrathin directional carpet cloak based on generalized Snell's law[J]. Applied Phys-ics Letters, 2013, 103(15): 151115.

              Zhang J, Mei Z L, Zhang W R, et al. An ultrathin directional carpet cloak based on generalized Snell's law[J]. Applied Phys-ics Letters, 2013, 103(15): 151115.

    [9] [9] Leonhardt U. Optical conformal mapping[J]. Science, 2006, 312(5781): 1777–1780.

              Leonhardt U. Optical conformal mapping[J]. Science, 2006, 312(5781): 1777–1780.

    [10] [10] Ma X L, Pu M B, Li X, et al. All-metallic wide-angle metasurfaces for multifunctional polarization manipulation[J]. Opto-Electronic Advances, 2019, 2(3): 180023.

              Ma X L, Pu M B, Li X, et al. All-metallic wide-angle metasurfaces for multifunctional polarization manipulation[J]. Opto-Electronic Advances, 2019, 2(3): 180023.

    [11] [11] Nemati A, Wang Q, Hong M H, et al. Tunable and reconfigurable metasurfaces and metadevices[J]. Opto-Electronic Advances, 2018, 1(5): 180009.

              Nemati A, Wang Q, Hong M H, et al. Tunable and reconfigurable metasurfaces and metadevices[J]. Opto-Electronic Advances, 2018, 1(5): 180009.

    [12] [12] Rahmani M, Leo G, Brener I, et al. Nonlinear frequency conver-sion in optical nanoantennas and metasurfaces: materials evo-lution and fabrication[J]. Opto-Electronic Advances, 2018, 1(10): 180021.

              Rahmani M, Leo G, Brener I, et al. Nonlinear frequency conver-sion in optical nanoantennas and metasurfaces: materials evo-lution and fabrication[J]. Opto-Electronic Advances, 2018, 1(10): 180021.

    [13] [13] Luo X G. Principles of electromagnetic waves in metasurfaces[J]. Science China Physics, Mechanics & Astronomy, 2015, 58(9): 594201.

              Luo X G. Principles of electromagnetic waves in metasurfaces[J]. Science China Physics, Mechanics & Astronomy, 2015, 58(9): 594201.

    [14] [14] Li X, Ma X L, Luo X G. Principles and applications of metasur-faces with phase modulation[J]. Opto-Electronic Engineering, 2017, 44(3): 255–275.

              Li X, Ma X L, Luo X G. Principles and applications of metasur-faces with phase modulation[J]. Opto-Electronic Engineering, 2017, 44(3): 255–275.

    [15] [15] Jin J J, Luo J, Zhang X H, et al. Generation and detection of orbital angular momentum via metasurface[J]. Scientific Reports, 2016, 6: 24286.

              Jin J J, Luo J, Zhang X H, et al. Generation and detection of orbital angular momentum via metasurface[J]. Scientific Reports, 2016, 6: 24286.

    [16] [16] Gao H, Pu M B, Li X, et al. Super-resolution imaging with a Bessel lens realized by a geometric metasurface[J]. Optics Ex-press, 2017, 25(12): 13933–13943.

              Gao H, Pu M B, Li X, et al. Super-resolution imaging with a Bessel lens realized by a geometric metasurface[J]. Optics Ex-press, 2017, 25(12): 13933–13943.

    [17] [17] Luo X G, Pu M B,Li X, et al. Broadband spin Hall effect of light in single nanoapertures[J]. Light: Science & Applications, 2017, 6(6): e16276.

              Luo X G, Pu M B,Li X, et al. Broadband spin Hall effect of light in single nanoapertures[J]. Light: Science & Applications, 2017, 6(6): e16276.

    [18] [18] Li X, Pu M B, Zhao Z Y, et al. Catenary nanostructures as com-pact Bessel beam generators[J]. Scientific Reports, 2016, 6: 20524.

              Li X, Pu M B, Zhao Z Y, et al. Catenary nanostructures as com-pact Bessel beam generators[J]. Scientific Reports, 2016, 6: 20524.

    [19] [19] Pu M B, Li X, Ma X L, et al. Catenary optics for achromatic generation of perfect optical angular momentum[J]. Science Advances, 2015, 1(9): e1500396.

              Pu M B, Li X, Ma X L, et al. Catenary optics for achromatic generation of perfect optical angular momentum[J]. Science Advances, 2015, 1(9): e1500396.

    [20] [20] Hasman E, Kleiner V, Biener G, et al. Polarization dependent focusing lens by use of quantized Pancharatnam–Berry phase diffractive optics[J]. Applied Physics Letters, 2003, 82(3): 328–330.

              Hasman E, Kleiner V, Biener G, et al. Polarization dependent focusing lens by use of quantized Pancharatnam–Berry phase diffractive optics[J]. Applied Physics Letters, 2003, 82(3): 328–330.

    CLP Journals

    [1] Li Zhu, Wang Changtao, Kong Weijie, Wang Yanqin, Guo Yinghui, Li Xiong, Ma Xiaoliang, Pu Mingbo, Luo Xiangang. Broadband achromatic metasurface filter for apodization imaging in the visible[J]. Opto-Electronic Engineering, 2021, 48(5): 200466

    [2] Zhang Fei, Guo Yinghui, Pu Mingbo, Li Xiong, Ma Xiaoliang, Luo Xiangang. Metasurfaces enabled by asymmetric photonic spin-orbit interactions[J]. Opto-Electronic Engineering, 2020, 47(10): 200366

    Tools

    Get Citation

    Copy Citation Text

    Dai Chengwei, Yan Chao, Zeng Qingyu, Li Xiong, Guo Yinghui, Pu Mingbo, WangChangtao, Luo Xiangang. A method of designing new Bessel beam generator[J]. Opto-Electronic Engineering, 2020, 47(6): 190190

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Article

    Received: Apr. 18, 2019

    Accepted: --

    Published Online: Oct. 27, 2020

    The Author Email: Chengwei Dai (chengwdai@163.com)

    DOI:10.12086/oee.2020.190190

    Topics