Journal of the Chinese Ceramic Society, Volume. 51, Issue 6, 1510(2023)
Effect of B-Site Doping on Mechanical Properties of BaCeO3-δ Proton Conducting Electrolyte
[6] [6] DUAN C C, HUANG J, SULLIVAN N, et al. Proton-conducting oxides for energy conversion and storage[J]. Appl Phys Rev, 2020, 7(1): 011314.
[7] [7] MENG Y Q, GAO J, ZHAO Z Y, et al. Review: recent progress in low-temperature proton-conducting ceramics[J]. J Mater Sci, 2019, 54(13): 9291-9312.
[10] [10] BI L, SHAFI S P, TRAVERSA E. Y-doped BaZrO3 as a chemically stable electrolyte for proton-conducting solid oxide electrolysis cells (SOECs)[J]. J Mater Chem A, 2015, 3(11): 5815-5819.
[12] [12] MEDVEDEV D A. Current drawbacks of proton-conducting ceramic materials: how to overcome them for real electrochemical purposes[J]. Curr Opin Green Sustain Chem, 2021, 32: 100549.
[13] [13] HAN D L, NOSE Y, SHINODA K, et al. Site selectivity of dopants in BaZr1-yMyO3-δ (M = Sc, Y, Sm, Eu, Dy) and measurement of their water contents and conductivities[J]. Solid State Ion, 2012, 213: 2-7.
[14] [14] HAN D L, UDA T. The best composition of an Y-doped BaZrO3 electrolyte: selection criteria from transport properties, microstructure, and phase behavior[J]. J Mater Chem A, 2018, 6(38): 18571-18582.
[15] [15] Li J, Hou J, Lu Y, et al. Ca-containing Ba0.95Ca0.05Co0.4Fe0.4Zr0.1Y0.1O3-δ cathode with high CO2-poisoning tolerance for proton-conducting solid oxide fuel cells. J Power Sources 2020, 453: 227909.
[16] [16] MURPHY R, ZHOU Y C, ZHANG L, et al. A new family of proton-conducting electrolytes for reversible solid oxide cells: BaHfxCe0.8-xY0.1Yb0.1O3-δ[J]. Adv Funct Mater, 2020, 30(35): 2002265.
[17] [17] LIU Z J, CHEN M L, ZHOU M Y, et al. Multiple effects of iron and nickel additives on the properties of proton conducting yttrium-doped Barium cerate-zirconate electrolytes for high-performance solid oxide fuel cells[J]. ACS Appl Mater Interfaces, 2020, 12(45): 50433-50445.
[18] [18] MAWDSLEY J R, DAVID CARTER J, JEREMY KROPF A, et al. Post-test evaluation of oxygen electrodes from solid oxide electrolysis stacks[J]. Int J Hydrog Energy, 2009, 34(9): 4198-4207.
[19] [19] HE C R, WANG W G, WANG J X, et al. Effect of alumina on the curvature, Young’s modulus, thermal expansion coefficient and residual stress of planar solid oxide fuel cells[J]. J Power Sources, 2011, 196(18): 7639-7644.
[21] [21] WEI J, OSIPOVA T, MALZBENDER J, et al. Mechanical characterization of SOFC/SOEC cells[J]. Ceram Int, 2018, 44(10): 11094-11100.
[22] [22] FU Y P, WENG C S. Effect of rare-earth ions doped in BaCeO3 on chemical stability, mechanical properties, and conductivity properties[J]. Ceram Int, 2014, 40(7): 10793-10802.
[23] [23] OLIVER W C, PHARR G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J].J Mater Res, 1992, 7(6): 1564-1583.
[24] [24] ZHOU W Y, MALZBENDER J, ZENG F L, et al. Mechanical properties of BaCe0.65Zr0.2Y0.15O3- proton-conducting material determined using different nanoindentation methods[J]. J Eur Ceram Soc, 2020, 40(15): 5653-5661.
[27] [27] YUE S F, JING Y H, SUN Y, et al. Mechanistic insights into proton diffusion in Σ3 BaZrO3 (210)[001]tilt grain boundary[J]. Ceram Int, 2021, 48(2): 2097-2104.
[28] [28] RAHAMAN M N. Sintering of Ceramics[M]. Taylor & Francis, 2007
[29] [29] PARK D H, SON K Y, LEE J H, et al. Effect of ZnO addition in In2O3 ceramics: defect chemistry and sintering behavior[J]. Solid State Ion, 2004, 172(1-4): 431-434.
[31] [31] KUAN D, MIAO L N, JIE H, et al. A novel inhibiting water adsorption strategy to enhance the cathode electrocatalytic ability[J]. J Alloys Compd, 2021, 876: 160205.
[32] [32] ZHENG Y F, WANG S, PAN Z H, et al. Electrochemical CO2 reduction to CO using solid oxide electrolysis cells with high-performance Ta-doped bismuth strontium ferrite air electrode[J]. Energy, 2021, 228: 120579.
[34] [34] YAMANAKA S, FUJIKANE M, HAMAGUCHI T, et al. Thermophysical properties of BaZrO3 and BaCeO3[J]. J Alloys Compd, 2003, 359(1-2): 109-113.
[35] [35] ZHANG Z Y, KOPPENSTEINER J, SCHRANZ W, et al. Microstructure dynamics in orthorhombic perovskites[J]. Phys Rev B Condens Matter, 2010, 82(1): 014113.
[36] [36] MALZBENDER J, WAKUI T, STEINBRECH R W. Curvature of planar solid oxide fuel cells during sealing and cooling of stacks[J]. Fuel Cells, 2006, 6(2): 123-129.
[37] [37] CHAIM R, HEFETZ M. Effect of grain size on elastic modulus and hardness of nanocrystalline ZrO2-3 wt% Y2O3 ceramic[J]. J Mater Sci, 2004, 39(9): 3057-3061.
[38] [38] ZHOU J Q, LI Y L, ZHU R T, et al. The grain size and porosity dependent elastic moduli and yield strength of nanocrystalline ceramics[J]. Mater Sci Eng A, 2007, 445-446: 717-724.
[40] [40] MATSUMOTO H, KAWASAKI Y, ITO N, et al. Relation between electrical conductivity and chemical stability of BaCeO3-Based proton conductors with different trivalent dopants[J]. Electrochem Solid State Lett, 2007, 10(4): B77.
[41] [41] KATAHIRA K, KOHCHI Y, SHIMURA T, et al. Protonic conduction in Zr-substituted BaCeO3[J]. Solid State Ion, 2000, 138(1-2): 91-98.
Get Citation
Copy Citation Text
RU Yi, ZHOU Jianli, KE Jin, GUO Jinjie, ZHANG Jin, PAN Zehua, ZHONG Zheng. Effect of B-Site Doping on Mechanical Properties of BaCeO3-δ Proton Conducting Electrolyte[J]. Journal of the Chinese Ceramic Society, 2023, 51(6): 1510
Category:
Received: Feb. 17, 2023
Accepted: --
Published Online: Aug. 13, 2023
The Author Email:
CSTR:32186.14.