Journal of Synthetic Crystals, Volume. 49, Issue 11, 1953(2020)

Large LatticeMismatched Heteroepitaxial Growth of Nitride Wide Bandgap Semiconductors by MOCVD

SHEN Bo1...2,3,4,5, YANG Xuelin1,2,3, and XU Fujun1,23 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • 5[in Chinese]
  • show less
    References(90)

    [3] [3] Dadgar A, Strittmatter A, Blsing J, Metalorganic chemical vapor phase epitaxy of galliumnitride on silicon[J]. Physica Status Solidi C, 2003, 6: 15831606.

    [4] [4] Amano H, Sawaki N, Akasaki I, et al. Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer[J]. Applied Physics Letters, 1986, 48(5): 353355.

    [5] [5] Nakamura S, Harada Y, Seno M. Novel metalorganic chemical vapor deposition system for GaN growth[J]. Applied Physics Letters, 1991, 58(18): 20212023.

    [6] [6] Khan M A, Adivarahan V, Zhang J P, et al. Stripe geometry ultraviolet light emitting diodes at 305 nanometers using quaternary AlInGaN multiple quantum wells[J]. Japanese Journal of Applied Physics, 2001, 40(Part 2,No.12A): L1308L1310.

    [7] [7] Kneissl M, Kolbe T, Chua C, et al. Advances in group Ⅲnitride based deep UV lightemitting diode technology[J]. Semiconductor Science and Technology, 2011, 26(1): 014036.

    [8] [8] Mickeviius J, Tamulaitis G, Shur M, et al. Internal quantum efficiency in AlGaN with strong carrier localization[J]. Applied Physics Letters, 2012, 101(21): 211902.

    [9] [9] Ban K, Yamamoto J I, Takeda K, et al. Internal quantum efficiency of wholecompositionrange AlGaN multiquantum wells[J]. Applied Physics Express, 2011, 4(5): 052101.

    [10] [10] Yoichi Kawakami, Mitsuru Funato, Ryan G. Banal. Initial nucleation of AlN grown directly on sapphire substrates by metalorganic vapor phase epitaxy[J]. Applied Physics Letters, 2008, 92(24): 241905.

    [11] [11] Hirayama H, Yatabe T, Noguchi N, et al. 231261 nm AlGaN deepultraviolet lightemitting diodes fabricated on AlN multilayer buffers grown by ammonia pulseflow method on sapphire[J]. Applied Physics Letters, 2007, 91(7): 071901.

    [12] [12] Miyake H, Nishio G, Suzuki S, et al. Annealing of an AlN buffer layer in N2CO for growth of a highquality AlN film on sapphire[J]. Applied Physics Express, 2016, 9(2): 025501.

    [13] [13] Miyake H, Lin C H, Tokoro K, et al. Preparation of highquality AlN on sapphire by hightemperature facetoface annealing[J]. Journal of Crystal Growth, 2016, 456: 155159.

    [14] [14] Imura M, Nakano K, Narita G, et al. Epitaxial lateral overgrowth of AlN on trenchpatterned AlN layers[J]. Journal of Crystal Growth, 2007, 298: 257260.

    [15] [15] Zeimer U, Kueller V, Knauer A, et al. High quality AlGaN grown on ELO AlN/sapphire templates[J]. Journal of Crystal Growth, 2013, 377:3236.

    [16] [16] Dong P, Yan J C, Wang J X, et al. 282nm AlGaNbased deep ultraviolet lightemitting diodes with improved performance on nanopatterned sapphire substrates[J]. Applied Physics Letters, 2013, 102(24): 241113.

    [17] [17] Xu F J, Zhang L S, Xie N, et al. Realization of low dislocation density AlN on a smallcoalescencearea nanopatterned sapphire substrate[J]. CrystEngComm, 2019, 21(15): 24902494.

    [18] [18] Wickenden A E, Koleske D D, Henry R L, et al. Resistivity control in unintentionally doped GaN films grown by MOCVD[J].Journal of Crystal Growth, 2004, 260(1/2): 5462.

    [19] [19] Xu F J, Xu J, Shen B, et al. Realization of highresistance GaN by controlling the annealing pressure of the nucleation layer in metalorganic chemical vapor deposition[J]. Thin Solid Films, 2008, 517(2): 588591.

    [20] [20] Xu F J, Shen B, Wang M J, et al. Mechanical properties of AlxGa1-xN films with high Al composition grown on AlN/sapphire templates[J].Applied Physics Letters, 2007, 91(9): 091905.

    [21] [21] Aggerstam T, Lourdudoss S, Radamson H H, et al. Investigation of the interface properties of MOVPE grown AlGaN/GaN high electron mobility transistor (HEMT) structures on sapphire [J].Thin Solid Films, 2006, 515(2): 705707.

    [22] [22] Webb J B, Tang H, Rolfe S, et al. Semiinsulating Cdoped GaN and highmobility AlGaN/GaN heterostructures grown by ammonia molecular beam epitaxy[J].Applied Physics Letters, 1999, 75(7): 953955.

    [23] [23] Fariza A,Lesnik A,Neugebauer S, et al. Leakage currents and Fermilevel shifts in GaN layers upon iron and carbondoping[J]. Journal of Applied Physics, 2017, 122(2): 025704.

    [24] [24] Warren Weeks T Jr,Bremser M D,Ailey K S, et al. GaN thin films deposited via organometallic vapor phase epitaxy on alpha(6H)SiC(0001) using hightemperature monocrystalline AlN buffer layers[J].Applied Physics Letters, 1995, 67(3): 401403.

    [25] [25] Chen J T, Pomeroy J W, Rorsman N, et al. Low thermal resistance of a GaNonSiC transistor structure with improved structural properties at the interface[J].Journal of Crystal Growth, 2015, 428: 5458.

    [26] [26] Pengelly R S, Wood S M, Milligan J W, et al. A review of GaN on SiC high electronmobility power transistors and MMICs[J].IEEE Transactions on Microwave Theory and Techniques, 2012, 60(6): 17641783.

    [27] [27] Guo S, Gao X, Gorka D, et al. MOCVD growth and characterization of GaN HEMT material[J]. ECS Transactions, 2011, 41(8): 295299.

    [28] [28] Chen J T, Forsberg U, Janzén E. Impact of residual carbon on twodimensional electron gas properties in AlxGa1-xN/GaN heterostructure[J]. Applied Physics Letters, 2013, 102(19): 193506193510.

    [29] [29] Wang X L, Hu G X, Ma Z Y, et al. AlGaN/AlN/GaN/SiC HEMT structure with high mobility GaN thin layer as channel grown by MOCVD[J].Journal of Crystal Growth, 2007, 298: 835839.

    [30] [30] Zhang D G, Li Z H, Yang Q K, et al. Research on epitaxial of 250 nm high quality GaN HEMT based on AlN surface leveling technology[J].Applied Surface Science, 2020, 509: 145339.

    [31] [31] Dadgar A, Blsing J, Diez A, et al. Metalorganic chemical vapor phase epitaxy of crackfree GaN on Si (111) exceeding 1 μm in thickness[J]. Japanese Journal of Applied Physics, 2000, 39(Part 2,No. 11B): L1183L1185.

    [32] [32] Feltin E, Beaumont B, Laügt M, et al. Stress control in GaN grown on silicon (111) by metalorganic vapor phase epitaxy[J]. Applied Physics Letters, 2001, 79(20): 32303232.

    [33] [33] Cheng K, Leys M, Degroote S, et al. Flat GaN epitaxial layers grown on Si(111) by metalorganic vapor phase epitaxy using stepgraded AlGaN intermediate layers[J]. Journal of Electronic Materials, 2006, 35(4): 592598.

    [34] [34] Ishikawa H, Zhao G Y, Nakada N, et al. GaN on Si substrate with AlGaN/AlN intermediate layer[J]. Japanese Journal of Applied Physics, 1999, 38(Part 2,No.5A): L492L494.

    [35] [35] Dadgar A, Hempel T, Blsing J, et al. Improving GaNonsilicon properties for GaN device epitaxy[J]. Physica Status Solidi C, 2011, 8(5): 15031508.

    [36] [36] Lawrence Selvaraj S, Suzue T, Egawa T. Breakdown enhancement of AlGaN/GaN HEMTs on 4in silicon by improving the GaN quality on thick buffer layers[J]. IEEE Electron Device Letters, 2009, 30(6): 587589.

    [37] [37] Liu J, Huang Y, Sun X, et al. Waferscale crackfree 10 μmthick GaN with a dislocation density of 5.8×107 cm-2 grown on Si[J]. Journal of Physics D: Applied Physics, 2019, 52(42): 4251024251027.

    [38] [38] Zhang J, Yang X L, Feng Y X, et al. Vacancyengineeringinduced dislocation inclination in Ⅲnitrides on Si substrates[J].Physical Review Materials, 2020, 4(7): 073402.

    [39] [39] Cheng J P, Yang X L, Zhang J, et al. Edge dislocations triggered surface instability in tensile epitaxial hexagonal nitride semiconductor[J].ACS Applied Materials & Interfaces, 2016, 8(49): 3410834114.

    [40] [40] Then H W, Dasgupta S, Radosavljevic M, et al. 3D heterogeneous integration of high performance highK metal gate GaN NMOS and Si PMOS transistors on 300 mm highresistivity Si substrate for energyefficient and compact power delivery, RF (5G and beyond) and SoC applications[C] //2019 IEEE International Electron Devices Meeting (IEDM). December 711, 2019, San Francisco, CA, USA. IEEE, 2019: 17.3. 117.3.4.

    [41] [41] Kneissl M, Kolbe T, Chua C, et al. Advances in group Ⅲnitridebased deep UV lightemitting diode technology[J]. Semiconductor Science and Technology, 2011, 26(1): 014036.

    [42] [42] Hirayama H, Maeda N, Fujikawa S, et al. Recent progress and future prospects of AlGaNbased highefficiency deepultraviolet lightemitting diodes[J]. Japanese Journal of Applied Physics, 2014, 53(10): 100209.

    [43] [43] Jindal V, ShahedipourSandvik F. Density functional theoretical study of surface structure and adatom kinetics for wurtzite AlN[J]. Journal of Applied Physics, 2009, 105(8): 084902.

    [44] [44] Lin H Y, Chen Y F, Lin T Y, et al. Direct evidence of compositional pulling effect in AlxGa1-xN epilayers[J]. Journal of Crystal Growth, 2006, 290(1): 225228.

    [45] [45] Tsai Y L, Wang C L, Lin P H, et al. Observation of compositional pulling phenomenon in AlxGa1-xN (0.4<x<1.0) films grown on (0001) sapphire substrates[J]. Applied Physics Letters, 2003, 82(1): 3133.

    [46] [46] He C, Qin Z, Xu F, et al. Mechanism of stressdriven composition evolution during heteroepitaxy in a ternary AlGaN system[J]. Sci Rep, 2016, 6: 25124.

    [47] [47] Stampfl C, Neugebauer J, Van de Walle C G. Doping of AlxGa1-xN alloys[J]. Materials Science and Engineering:B, 1999, 59(1/2/3): 253257.

    [48] [48] Namkoong G, Doolittle W A, Brown A S. Incorporation of Mg in GaN grown by plasmaassisted molecular beam epitaxy[J]. Applied Physics Letters, 2000, 77(26): 43864388.

    [49] [49] Nam K B, Nakarmi M L, Li J, et al. Mg acceptor level in AlN probed by deep ultraviolet photoluminescence[J]. Applied Physics Letters, 2003, 83(5): 878880.

    [50] [50] Zhang X, Xu F J, Wang J M, et al. Epitaxial growth of AlN films on sapphire via a multilayer structure adopting a low and hightemperature alternation technique[J]. CrystEngComm, 2015, 17(39): 74967499.

    [51] [51] Wang J M, Xu F J, He C G, et al. High quality AlN epilayers grown on nitrided sapphire by metal organic chemical vapor deposition[J]. Scientific Reports, 2017, 7: 42747.

    [52] [52] Wang M X, Xu F J, Xie N, et al. Crystal quality evolution of AlN films via hightemperature annealing under ambient N2 conditions[J]. CrystEngComm, 2018, 17: 7496.

    [53] [53] Wang M X, Xu F J, Wang J M, et al. The sapphire substrate pretreatment effects on hightemperature annealed AlN templates in deep ultraviolet light emitting diodes[J]. CrystEngComm, 2019, 21(31): 46324636.

    [54] [54] Wang M X, Xu F J, Xie N, et al. Hightemperature annealing induced evolution of strain in AlN epitaxial films grown on sapphire substrates[J]. Applied Physics Letters, 2019, 114(11): 112105.

    [55] [55] Zhang L S, Xu F J, Wang J M, et al. Highquality AlN epitaxy on nanopatterned sapphire substrates prepared by nanoimprint lithography[J]. Scientific Reports, 2016, 6: 35934.

    [56] [56] Xie N, Xu F J, Zhang N, et al. Improved crystalline quality of AlN on nanopatterned sapphire substrate based on period size effect[J]. Japanese Journal of Applied Physics, 2019, 58: 100912.

    [57] [57] Xie N, Xu F J, Wang J M, et al. Stress evolution in AlN grown on nanopatterned sapphire substrates[J]. Applied Physics Express, 2020, 13(1): 015504.

    [58] [58] He C G, Qin Z X, Xu F J, et al. Growth of high quality nAl0.5Ga0.5N thick films by MOCVD[J]. Materials Letters, 2016, 176: 298300.

    [59] [59] Hirayama H, Fujikawa S, Noguchi N, et al. 222282 nm AlGaN and InAlGaNbased deepUV LEDs fabricated on highquality AlN on sapphire[J]. Physica Status Solidi (A) Applications and Materials Science, 2009, 206(6): 11761182.

    [60] [60] Wang T Y, Tasi C T, Lin C F, et al. 85% internal quantum efficiency of 280 nm AlGaN multiple quantum wells by defect engineering[J]. Scientific Reports, 2017, 7(1): 14422.

    [61] [61] Bryan Z, Bryan I, Xie, J. Q., et al. High internal quantum efficiency in AlGaN multiple quantum wells grown on bulk AlN substrates[J]. Applied Physics Letters, 2015, 106(14): 142107.

    [62] [62] Sun Y H, Xu F J, Zhang N, et al. Realization of high efficiency AlGaNbased multiple quantum wells grown on nanopatterned sapphire substrates[J]. Cryst Eng Comm, 2020, DOI: 10.1039/D0CE01491E.

    [63] [63] Sun Y H, Xu F J, Xie N, et al. Controlled bunching approach for achieving high efficiency active region in AlGaNbased deep ultraviolet lightemitting devices with dualband emission[J]. Applied Physics Letters, 2020: 116212102.

    [64] [64] He C G, Qin Z Q, Xu F J, et al. Free and bound excitonic effects in Al0.5Ga0.5N/Al0.35Ga0.65N MQWs with different Sidoping levels in the well layers[J]. Sci Rep, 2015, 5: 13046.

    [65] [65] Wang W Y, Lu H M, Fu L, et al. Enhancement of optical polarization degree of AlGaN quantum wells by using staggered structure[J]. Optics Express, 2016, 24(16): 1817618183.

    [66] [66] Chen Y, Wu H, Han E, et al. High hole concentration in ptype AlGaN by indiumsurfactantassisted Mgdelta doping[J]. Applied Physics Letters, 2015, 106(16): 162102.

    [67] [67] Yoshinobu A, Misaichi T, Sohachi I, et al. High hole carrier concentration realized by alternative codoping technique in metal organic chemical vapor deposition[J]. Applied Physics Letters, 2011, 99(11): 112110.

    [68] [68] Zheng T C, Lin W, Liu R, et al. Improved ptype conductivity in Alrich AlGaN using multidimensional Mgdoped superlattices[J]. Sci Rep, 2016, 6: 21897.

    [69] [69] Simon J, Protasenko V, Lian C, et al. Polarizationinduced hole doping in widebandgap uniaxial semiconductor heterostructures[J]. Science, 2010, 327(5961): 6064.

    [70] [70] Zhang Y H, Dadgar A, Palacios T. Gallium nitride vertical power devices on foreign substrates: a review and outlook[J]. Journal of Physics D: Applied Physics, 2018, 51(27): 273001.

    [71] [71] Khadar R A, Liu C, Zhang L Y, et al. 820V GaNonSi quasivertical pin diodes with BFOM of 2.0 GW/cm2[J]. IEEE Electron Device Letters, 2018, 39(3): 401404.

    [72] [72] Romanov A E, Speck J S. Stress relaxation in mismatched layers due to threading dislocation inclination[J]. Applied Physics Letters, 2003, 83(13): 25692571.

    [73] [73] Follstaedt D M, Lee S R, Allerman A A, et al. Strain relaxation in AlGaN multilayer structures by inclined dislocations[J]. Journal of Applied Physics, 2009, 105(8): 083507.

    [74] [74] Cheng J P, Yang X L, Sang L, et al. High mobility AlGaN/GaN heterostructures grown on Si substrates using a large latticemismatch induced stress control technology[J]. Applied Physics Letters, 2015, 106(14): 142106.

    [75] [75] Arulkumaran S, Ranjan K, Ng G I, et al. Highfrequency microwave noise characteristics of InAlN/GaN highelectron mobility transistors on Si (111) substrate[J]. IEEE Electron Device Letters, 2014, 35(10): 992994.

    [76] [76] Zhang J, Yang X L, Cheng J P, et al. Enhanced transport properties in InAlGaN/AlN/GaN heterostructures on Si (111) substrates: the role of interface quality[J]. Applied Physics Letters, 2017, 110(17): 172101.

    [77] [77] Raghavan S. Kinetic approach to dislocation bending in lowmobility films[J]. Physical Review B, 2011, 83(5): 052102.

    [78] [78] Chen K J, Hberlen O, Lidow A, et al. GaNonSi power technology: devices and applications[J]. IEEE Transactions on Electron Devices, 2017, 64(3): 779795.

    [79] [79] Uren M J, Moreke J, Kuball M. Buffer design to minimize current collapse in GaN/AlGaN HFETs[J]. IEEE Transactions on Electron Devices, 2012, 59(12): 33273333.

    [80] [80] Demchenko D O, Diallo I C, Reshchikov M A. Yellow luminescence of gallium nitride generated by carbon defect complexes[J]. Physical Review Letters, 2013, 110(8): 087404.

    [81] [81] Lyons J L, Janotti A, Van de Walle C G. Effects of carbon on the electrical and optical properties of InN, GaN, and AlN[J]. Physical Review B, 2014, 89(3): 035204.

    [82] [82] Wright A F. Substitutional and interstitial carbon in wurtzite GaN[J].Journal of Applied Physics, 2002, 92(5): 25752585.

    [83] [83] Wagner J, Newman R C, Davidson B R, et al. Dicarbon defects in annealed highly carbon doped GaAs[J]. Physical Review Letters, 1997, 78(1): 74.

    [84] [84] Newman R C, Davidson B R, Wagner J, et al. Thermal stability of semiinsulating InP epilayers: the roles of dicarbon and carbonhydrogen centers[J]. Physical Review B, 2001, 63(20): 205307.

    [85] [85] Yang J Y, Brown G J, Dutta M, et al. Photon absorption in the Restrahlen band of thin films of GaN and AlN:two phonon effects[J]. Journal of Applied Physics, 2005, 98(4): 043517.

    [86] [86] Ibanez J, Hernandez S, AlarconLlado E, et al. Farinfrared transmission in GaN, AlN, and AlGaN thin films grown by molecular beam epitaxy[J]. Journal of Applied Physics, 2008, 104(3): 033544.

    [87] [87] Wu S, Yang X L, Zhang H S, et al. Unambiguous identification of carbon location on the Nsite in semiinsulating GaN[J]. Physical Review Letters, 2018, 121(14): 145505.

    [88] [88] Limpijumnong S, Northrup J E, Van de Walle C G. Entropydriven stabilization of a novel configuration for acceptorhydrogen complexes in GaN[J]. Physical Review Letters, 2001, 87(20): 205505.

    [89] [89] Gelhausen O, Phillips M R, Goldys E M, et al. Dissociation of Hrelated defect complexes in Mgdoped GaN[J]. Physical Review B, 2004, 69(12): 125210.

    [90] [90] Reboredo F A, Pantelides S T. Novel defect complexes and their role in the ptype doping of GaN[J]. Physical Review Letters, 1999, 82(9): 1887.

    [91] [91] Puzyrev Y S, Roy T, Beck M, et al. Dehydrogenation of defects and hotelectron degradation in GaN highelectronmobility transistors[J]. Journal of Applied Physics, 2011, 109(3): 034501.

    [92] [92] Wu S, Yang X L, Zhang Q, et al. Direct evidence of hydrogen interaction with carbon: CH complex in semiinsulating GaN[J]. Applied Physics Letters, 2020, 116(26): 262101.

    Tools

    Get Citation

    Copy Citation Text

    SHEN Bo, YANG Xuelin, XU Fujun. Large LatticeMismatched Heteroepitaxial Growth of Nitride Wide Bandgap Semiconductors by MOCVD[J]. Journal of Synthetic Crystals, 2020, 49(11): 1953

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: --

    Accepted: --

    Published Online: Jan. 26, 2021

    The Author Email:

    DOI:

    CSTR:32186.14.

    Topics