Chinese Journal of Quantum Electronics, Volume. 41, Issue 2, 185(2024)
Tailoring single
[1] Aharonovich I, Englund D, Toth M. Solid-state single-photon emitters[J]. Nature Photonics, 10, 631-641(2016).
[2] He Y F, Li L N, Bai Q et al. Quantum key distribution of detector's dead time in heralded single photon source[J]. Chinese Journal of Quantum Electronics, 40, 112-119(2023).
[3] Lodahl P, Mahmoodian S, Stobbe S. Interfacing single photons and single quantum dots with photonic nanostructures[J]. Reviews of Modern Physics, 87, 347-400(2015).
[4] Northup T E, Blatt R. Quantum information transfer using photons[J]. Nature Photonics, 8, 356-363(2014).
[5] Qiang X G, Zhou X Q, Wang J W et al. Large-scale silicon quantum photonics implementing arbitrary two-qubit processing[J]. Nature Photonics, 12, 534-539(2018).
[6] Senellart P, Solomon G, White A. High-performance semiconductor quantum-dot single-photon sources[J]. Nature Nanotechnology, 12, 1026-1039(2017).
[7] Zhou X T, Jiang Y H, Guo C F et al. Quantum secure direct communication protocol based on mixture of GHZ particles and single photon[J]. Chinese Journal of Quantum Electronics, 39, 768-775(2022).
[8] Lounis B, Orrit M. Single-photon sources[J]. Contemporary Physics, 46, 173-206(2005).
[9] Reimer M E, Cher C. The quest for a perfect single-photon source[J]. Nature Photonics, 13, 734-736(2019).
[10] Buckley S, Rivoire K, Vučković J. Engineered quantum dot single-photon sources[J]. Reports on Progress in Physics, 75, 126503(2012).
[11] Kan Y H, Bozhevolnyi S I. Advances in metaphotonics empowered single photon emission[J]. Advanced Optical Materials, 11, 202202759(2023).
[12] Pelton M. Modified spontaneous emission in nanophotonic structures[J]. Nature Photonics, 9, 427-435(2015).
[13] Zhang G R, Jia S T, Gu Y et al. Brightening and guiding single-photon emission by plasmonic waveguide-slit structures on a metallic substrate[J]. Laser & Photonics Reviews, 13, 1900025(2019).
[14] Lian H, Gu Y, Ren J J et al. Efficient single photon emission and collection based on excitation of gap surface plasmons[J]. Physical Review Letters, 114, 193002(2015).
[15] Bozhevolnyi S I, Khurgin J B. Fundamental limitations in spontaneous emission rate of single-photon sources[J]. Optica, 3, 1418-1421(2016).
[16] Chen J J, Gan F Y, Wang Y J et al. Plasmonic sensing and modulation based on Fano resonances[J]. Advanced Optical Materials, 6, 1701152(2018).
[17] Chen J J, Li Z, Gong Q H. All-optical control of surface plasmon polaritons based on metal slit structures[J]. Chinese Journal of Quantum Electronics, 31, 428-432(2014).
[18] Gramotnev D K, Bozhevolnyi S I. Plasmonics beyond the diffraction limit[J]. Nature Photonics, 4, 83-91(2010).
[19] Nuernisha A, Jin C J. LSPR-enhanced upconversion luminescence of NaYF4: Yb/Er nanoparticles and its application[J]. Chinese Journal of Quantum Electronics, 30, 641-650(2013).
[20] Luo Y, Ahmadi E D, Shayan K et al. Purcell-enhanced quantum yield from carbon nanotube excitons coupled to plasmonic nanocavities[J]. Nature Communications, 8, 1413(2017).
[21] Jiang Q B, Roy P, Claude J B et al. Single photon source from a nanoantenna-trapped single quantum dot[J]. Nano Letters, 21, 7030-7036(2021).
[22] Shafi K M, Yalla R, Nayak K P. Bright and polarized fiber in-line single-photon source based on plasmon-enhanced emission into nanofiber guided modes[J]. Physical Review Applied, 19, 034008(2023).
[23] Werschler F, Lindner B, Hinz C et al. Efficient emission enhancement of single CdSe/CdS/PMMA quantum dots through controlled near-field coupling to plasmonic bullseye resonators[J]. Nano Letters, 18, 5396-5400(2018).
[24] Liu J, Su R B, Wei Y M et al. A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability[J]. Nature Nanotechnology, 14, 586-593(2019).
[25] Akselrod G M, Argyropoulos C, Hoang T B et al. Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas[J]. Nature Photonics, 8, 835-840(2014).
[26] Bogdanov S I, Shalaginov M Y, Lagutchev A S et al. Ultrabright room-temperature sub-nanosecond emission from single nitrogen-vacancy centers coupled to nanopatch antennas[J]. Nano Letters, 18, 4837-4844(2018).
[27] Hoang T B, Akselrod G M, Mikkelsen M H. Ultrafast room-temperature single photon emission from quantum dots coupled to plasmonic nanocavities[J]. Nano Letters, 16, 270-275(2016).
[28] Morozov S, Gaio M, Maier S A et al. Metal-dielectric parabolic antenna for directing single photons[J]. Nano Letters, 18, 3060-3065(2018).
[29] Curto A G, Volpe G, Taminiau T H et al. Unidirectional emission of a quantum dot coupled to a nanoantenna[J]. Science, 329, 930-933(2010).
[30] Andersen S K H, Bogdanov S, Makarova O et al. Hybrid plasmonic bullseye antennas for efficient photon collection[J]. ACS Photonics, 5, 692-698(2018).
[31] Kan Y H, Ding F, Zhao C Y et al. Directional off-normal photon streaming from hybrid plasmon-emitter coupled metasurfaces[J]. ACS Photonics, 7, 1111-1116(2020).
[32] Livneh N, Harats M G, Istrati D et al. Highly directional room-temperature single photon device[J]. Nano Letters, 16, 2527-2532(2016).
[33] Belacel C, Habert B, Bigourdan F et al. Controlling spontaneous emission with plasmonic optical patch antennas[J]. Nano Letters, 13, 1516-1521(2013).
[34] Kan Y H, Bozhevolnyi S I. Molding photon emission with hybrid plasmon-emitter coupled metasurfaces[J]. Advanced Optical Materials, 10, 2102697(2022).
[35] Wang Y L, Li S L, Yan J Y et al. Bidirectional to unidirectional emission of fluorescence controlled by optical traveling wave antennas[J]. Nanophotonics, 8, 1271-1278(2019).
[36] Andersen S K H, Kumar S, Bozhevolnyi S I. Ultrabright linearly polarized photon generation from a nitrogen vacancy center in a nanocube dimer antenna[J]. Nano Letters, 17, 3889-3895(2017).
[37] Zhang G R, Gu Y, Gong Q H et al. Symmetry-tailored patterns and polarizations of single-photon emission[J]. Nanophotonics, 9, 3557-3565(2020).
[38] Kan Y H, Andersen S K H, Ding F et al. Metasurface-enabled generation of circularly polarized single photons[J]. Advanced Materials, 32, e1907832(2020).
[39] Komisar D, Kumar S, Kan Y H et al. Generation of radially polarized single photons with plasmonic bullseye antennas[J]. ACS Photonics, 8, 2190-2196(2021).
[40] Xue Z Y, Jia S T, Li X Q et al. Scalar-superposition metasurfaces with robust placement of quantum emitters for tailoring single-photon emission polarization[J]. Laser & Photonics Reviews, 16, 2200179(2022).
[41] Bao Y J, Lin Q L, Su R B et al. On-demand spin-state manipulation of single-photon emission from quantum dot integrated with metasurface[J]. Science Advances, 6, eaba8761(2020).
[42] Jia S T, Li Y K, Xue Z Y et al. Multichannel single-photon emissions with on-demand momentums by using anisotropic quantum metasurfaces[J]. Advanced Materials, 35, e2212244(2023).
Get Citation
Copy Citation Text
Guangkun WU, Huafeng DING, Jianjun CHEN. Tailoring single
Category:
Received: Sep. 1, 2023
Accepted: --
Published Online: Jun. 24, 2024
The Author Email: WU Guangkun (wugk@mail.bnu.edu.cn)