Acta Photonica Sinica, Volume. 49, Issue 10, 1015002(2020)

Classification of Edge Distortion of Tooth Profile Image Based on Improved Twin Support Vector Machine

He SUN1...2, Wen-zhen ZHAO1, Wen-hui ZHAO1 and Zhen-yun DUAN1 |Show fewer author(s)
Author Affiliations
  • 1School of Mechanical Engineering,Shenyang University of Technology,Shenyang 110870,China
  • 2School of Electrical and Information Engineering,Liaoning Institute of Science and Technology,Benxi,Liaoning 117004,China
  • show less
    Figures & Tables(13)
    Geometric relationship of points on the involute
    Segmentation of the tooth profile measurement area
    Discrimination of edge distortion area & type
    Schematic diagram of edge distortion type discrimination
    Structure of gear vision measuring device
    The working process of gear vision image acquisition
    Eigenvector analysis
    Test results on OCF-PBT-TWSVM algorithm
    Test results on PBT-SVM algorithm
    • Table 1. Comparison of different normalization methods

      View table
      View in Article

      Table 1. Comparison of different normalization methods

      Normalization methodTest accuracyOptimal parameter selection of OCF-PBT-TWSVM
      No normalization78% (39/50)

      Population size N=20;Maximum number of iterations K=200;

      Best c1=46.52; c2=48.97; g=0.084

      [-1,1]Normalization96% (48/50)

      Population size N=20;Maximum number of iterations K=200;

      Best c1=6.544; c2=6.998; g=4.634

      [0,1]Normalization96% (48/50)

      Population size N=20;Maximum number of iterations K=200;

      Best c1=6.875; c2=6.529; g=16.004

    • Table 2. Comparison of different kernel functions

      View table
      View in Article

      Table 2. Comparison of different kernel functions

      Choice of kernel functionTest accuracyOptimal parameter selection of OCF-PBT-TWSVM
      Linear54% (27/50)

      Population size N=20;Maximum number of iterations K=200;

      Best c1=9.93; c2=10.46; g=11.795

      Polynomial92% (46/50)

      Population size N=20;Maximum number of iterations K=200;

      Best c1=7.59; c2=8.92; g=14.234

      Radial basis function96% (48/50)

      Population size N=20;Maximum number of iterations K=200;

      Best c1=6.89; c2=7.42; g=13.931

      Sigmoid42% (21/50)

      Population size N=20;Maximum number of iterations K=200;

      Best c1=6.58; c2=7.39; g=17.242

    • Table 3. Comparison of test results of different algorithms

      View table
      View in Article

      Table 3. Comparison of test results of different algorithms

      AlgorithmTest accuracyOptimal parameter selectionAverage test accuracy
      OCF-PBT-TWSVM97.87% (46/47)N=20; K=200; Best c1=15.38; c2=16.92; g=4.1896.96%
      97.22% (35/36)N=20; K=200; Best c1=20.85; c2=22.02; g=20.69
      96% (48/50)N=20; K=200; Best c1=6.89; c2=7.42; g=13.931
      PBT-SVM95.75% (45/47)Best c=5.66; g=494.06%
      94.44% (34/36)Best c=11.6; g=8
      92% (46/50)Best c=8; g=16
    • Table 4. Real-time statistics of visual measurement results of tooth profile edges

      View table
      View in Article

      Table 4. Real-time statistics of visual measurement results of tooth profile edges

      Normal edge signal

      Ignore type of distorted

      signal

      Eliminate type of distorted signalCompensation type of distorted signal
      1606410
      1587312
      162648
      1568412
      164448
      1539513
    Tools

    Get Citation

    Copy Citation Text

    He SUN, Wen-zhen ZHAO, Wen-hui ZHAO, Zhen-yun DUAN. Classification of Edge Distortion of Tooth Profile Image Based on Improved Twin Support Vector Machine[J]. Acta Photonica Sinica, 2020, 49(10): 1015002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Aug. 10, 2020

    Accepted: Sep. 17, 2020

    Published Online: Mar. 10, 2021

    The Author Email:

    DOI:10.3788/gzxb20204910.1015002

    Topics