PhotoniX, Volume. 5, Issue 1, 16(2024)

Astronomical adaptive optics: a review

Changhui Rao1,2,3、*, Libo Zhong1,2, Youming Guo1,2, Min Li1,2, Lanqiang Zhang1,2, and Kai Wei1,2,3
Author Affiliations
  • 1National Laboratory on Adaptive Optics, Chengdu, China
  • 2Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, China
  • 3The University of Chinese Academy of Sciences, Beijing, China
  • show less
    References(192)

    [3] [3] Kern P, Merkle F, Gaffard JP, Rousset G, Fontanella JC, Lena P. Prototype Of An Adaptive Optical System For Astronomical Observation. Proc. SPIE 0860, Real-Time Image Processing: Concepts and Technologies. 1988. .

    [4] [4] Beckers JM. Increasing the size of the isoplanatic patch with multiconjugate adaptive optics. Very Large Telescopes and their Instrumentation, ESO Conference and Workshop Proceedings, Proceedings of a ESO Conference on Very Large Telescopes and their Instrumentation, held in Garching, March 21-24, 1988. Garching: European Southern Observatory (ESO); 1988. p. 693. edited by Marie-Helene Ulrich.

    [5] [5] Lamb M, Venn K, Andersen D, Oya S, Shetrone M, Fattahi A, Howes L, Asplund M, Lardiere O, Akiyama M, et al. Using the multi-object adaptive optics demonstrator raven to observe metal-poor stars in and towards the Galactic Centre. Mon Not R Astron Soc. 2016;2865

    [6] [6] Rigaut F. Ground conjugate wide field adaptive optics for the elts. Beyond conventional adaptive optics: a conference devoted to the development of adaptive optics for extremely large telescopes. Proceedings of the Topical Meeting held May 7-10, 2001, Venice, Italy. Edited by E. Vernet, R. Ragazzoni, S. Esposito, and N. Hubin. Garching. Germany: European Southern Observatory; 2002. p. 11. ESO Conference and Workshop Proceedings, Vol. 58, ISBN 3923524617.

    [9] [9] Guo Y, Zhong L, Min L, Wang J, Wu Y, Chen K, Wei K, Rao C. Adaptive optics based on machine learning: a review. Opto-Electron Adv. 2022;5(20082):200082–120008220. .

    [10] [10] d'Orgeville C, Fetzer GJ. Four generations of sodium guide star lasers for adaptive optics in astronomy and space situational awareness. Proc. SPIE 9909, Adaptive Optics Systems V, 99090R. 2016. .

    [12] [12] Matijevich R, Johansson E, Johnson L, et al. Bringing Perfect Vision to the Daniel K. Inouye Solar Telescope. American Astronomical Society Meeting Abstracts# 227. 227: 146.21, 2016.

    [13] [13] Stroebele S, Vernet E, Brinkmann M, Jakob G, Lilley P, Casali M, et al. Deformable mirrors development program at ESO. Proc. SPIE 9909, Adaptive Optics Systems V, 99090O. 2016. .

    [14] [14] Huang L, Zheng Y, Guo Y, Zhang L, Sun C, Wang X. 21.2 kw, 1.94 times diffraction-limit quasi-continuous-wave laser based on a multi-stage, power-scalable and adaptive optics controlled yb:yag master-oscillator-power-amplifier system. Chin Opt Lett. 2020;18(11):061402.

    [15] [15] Laslandes M. Towards the spatialization of ALPA dms. Proceedings of the SPIE, Volume 11852, id. 118524J 11 pp. 2021.

    [17] [17] Zhang Y, Yuan Y, Zhou H, Liu H, Fang J, Zhang A, Xian H. Lightweight unimorph mirror using an optical replication method. Opt Eng. 2019;58(8):085101. .

    [19] [19] Biasi R, Manetti M, Andrighettoni M, Angerer G, Pescoller D, Patauner C, et al. E-ELT M4 adaptive unit final design and construction: a progress report. Proc. SPIE 9909, Adaptive Optics Systems V, 99097Y. 2016. .

    [20] [20] Kuiper S, Doelman N, Overtoom T, Nieuwkoop E, Russchenberg T, van Riel M, et al. Electromagnetic deformable mirror for space applications. Proc. SPIE 10562, International Conference on Space Optics — ICSO 2016, 1056230. 2017. .

    [21] [21] Zuo H, Li G, Pan C. Non-contact displacement measure method based on eddy current sensors in the large aperture adaptive mirror system. Proc. SPIE 10703, Adaptive Optics Systems VI, 107037B. 2018. .

    [22] [22] Hartley R, Kartz MW, Behrendt WC, Hines A, Pollock G, Bliss ES, et al. Wavefront correction for static and dynamic aberrations to within 1 second of the system shot in the NIF Beamlet demonstration facility. Proc. SPIE 3047, Solid State Lasers for Application to Inertial Confinement Fusion: Second Annual International Conference. 1997. .

    [23] [23] Munro J, Travouillon T, Lingham M. Fast pixel difference algorithm for determining piston step between optical mirror segments. Proceedings of the SPIE, Volume 11448, id. 114486H 11 pp. 2020. 41.

    [26] [26] Ng R, Levoy M, Brédif M, Duval G, Horowitz M, Hanrahan P. Light field photography with a hand-held plenopic camera. Tech Rep CTSR 2005-02. 2005;CTSR.

    [28] [28] Marwah K, Wetzstein G, Bando Y, Raskar R. Compressive light field photography using overcomplete dictionaries and optimized projections. ACM Trans. Graph. 2013;32(4).

    [29] [29] Lukin V. Adaptive optical imaging in the atmosphere. USP FIZ Nauk. 2006;176.

    [32] [32] Benedict J. Rittig, Breckinridge JB, Fried DL. Introduction: Atmospheric-compensation technology. J Opt Soc Am A. 1994;11(1):257–262.

    [33] [33] Foy R, Labeyrie A. Feasibility of adaptive telescope with laser probe. Astron Astrophys. 1985;152(2):29–31.

    [38] [38] Max CE, Olivier SS, Friedman HW, An J, Avicola K, Beeman BV, Bissinger HD, Brase JM, Erbert GV, Gavel DT, Kanz K, Liu MC, Macintosh B, Neeb KP, Patience J, Waltjen KE. Image improvement from a sodium-layer laser guide star adaptive optics system. Science. 1997;277(5332):1649–52. . https://www.science.org/doi/pdf/10.1126/science.277.5332.1649

    [39] [39] Wizinowich PL, Le Mignant D, Bouchez AH, Campbell RD, Chin JC, Contos AR, van Dam MA, Hartman SK, Johansson EM, Lafon RE, et al. The WM Keck Observatory laser guide star adaptive optics system: overview. Publ Astron Soc Pac. 2006;118(840):297. https://iopscience.iop.org/article/10.1086/499290/meta.

    [41] [41] Ramey E, Lu JR, Yin R, Robinson S, Wizinowich P, Ragland S, Lyke J, Jia S, Sakai S, Gautam A, et al. Analyzing long-term performance of the keck-ii adaptive optics system. In: Adaptive Optics Systems VII, vol. 11448, 2020. p. 1010–1026.

    [42] [42] Chin JCY, Wizinowich P, Wetherell E, Cetre S, Ragland S, Campbell R, et al. Laser guide star facility developments at W. M. Keck Observatory. Proc. SPIE 9148, Adaptive Optics Systems IV, 914808. 2014. .

    [43] [43] Chin JCY, Stalcup T, Wizinowich P, Panteleev S, Neyman C, Tsubota K, et al. Keck I laser guide star AO system integration. Proc. SPIE 7736, Adaptive Optics Systems II, 77361V. 2010. .

    [44] [44] Wizinowich P, Dekany R, Gavel D, Max C, Adkins S, Bauman B, et al. W. M. Keck Observatory's next-generation adaptive optics facility. Proc. SPIE 7015, Adaptive Optics Systems, 701511. 2008. .

    [45] [45] Chen GC-F, Fassnacht CD, Suyu SH, Rusu CE, Chan JHH, Wong KC, et al. A sharp view of h0licow: H0 from three time-delay gravitational lens systems with adaptive optics imaging. Mon Not R Astron Soc. 2019;490(2):1743–1773.

    [46] [46] Guyon O, Hayano Y, Tamura M, Kudo T, Oya S, Minowa Y, et al. Adaptive optics at the Subaru telescope: current capabilities and development. In: Adaptive Optics Systems IV, vol. 9148, 2014. p. 609–618. .

    [47] [47] Calia DB, Allaert E, Alvarez JL, Hauck CA, Avila G, Bendek E, et al. First light of the ESO laser guide star facility. In: Ellerbroek BL, Calia DB (eds.) Advances in Adaptive Optics II, vol. 6272, 2006. p. 50–60. .

    [48] [48] Norton AP, Gavel DT, Helmbrecht M, Kempf C, Gates E, Chloros K, et al. Laser guidestar uplink correction using a MEMS deformable mirror: on-sky test results and implications for future AO systems. Proc. SPIE 9148, Adaptive Optics Systems IV, 91481C. 2014. .

    [49] [49] Paufique J, Bruton A, Glindemann A, Jost A, Kolb J, Jochum L, Le Louarn M, Kiekebusch M, Hubin N, Madec P-Y, Conzelmann R, Siebenmorgen R, Donaldson R, Arsenault R, Tordo S. GRAAL: a seeing enhancer for the NIR wide-field imager Hawk-I. In: Ellerbroek BL, Hart M, Hubin N, Wizinowich PL (eds.) Adaptive Optics Systems II. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 7736, 2010. p. 77361.

    [51] [51] Fedrigo E, Bourtembourg R, Donaldson R, Soenke C, Valles MS, Zampieri S. SPARTA for the VLT: status and plans. Proc. SPIE 7736, Adaptive Optics Systems II, 77362I. 2010. .

    [52] [52] Girard JH, de Boer J, Haffert S, Zeidler P, Bohn A, van Holstein RG, Snellen I, Brinchmann J, Keller C, Bacon R, Bae J. Original use of MUSE’s laser tomography adaptive optics to directly image young accreting exoplanets, 2020. http://arxiv.org/abs/2003.02145

    [53] [53] Herriot G, Morris S, Roberts SC, Fletcher JM, Saddlemyer LK, Singh G, Veran J-P, Richardson EH. Innovations in Gemini adaptive optics system design. In: Bonaccini D, Tyson RK, editors. Adaptive Optical System Technologies, vol. 3353, 1998. p. 488–499. .

    [54] [54] Chun M, D’Orgeville C, Ellerbroek L, Graves J, Northcott M, Rigaut F. Curvature-based laser guide star adaptive optics system for gemini south. Proc SPIE, 2000. p. 142–148.

    [55] [55] Hackenberg WKP, Bonaccini D, Werner D. Fiber Raman laser development for multiple sodium laser guide star adaptive optics. Proc. SPIE 4839, Adaptive Optical System Technologies II. 2003. .

    [57] [57] Neichel B, Rigaut F, Vidal F, van Dam M, Garrel V, Carrasco ER, Pessev P, Winge C, Boccas M, D’Orgeville C, Arriagada G, Serio A, Fesquet V, Rambold W, Luhrs J, Moreno C, Gausachs G, Galvez R, Montes V, Edwards M. Gemini multi-conjugate adaptive optics system review ii: Commissioning, operation and overall performance. Mon Not R Astron Soc. 2014;440.

    [59] [59] Jin K, Wei K, Feng L, Bo Y, Zuo J, Li M, Fu H, Dai X, Bian Q, Yao J, Xu C, Wang Z, Peng Q, Xue X, Cheng X, Rao C, Xu Z, Zhang Y. Photon return on-sky test of pulsed sodium laser guide star with d\(_{2b}\) repumping. Publ Astron Soc Pac. 2015;127(954):749–56. .

    [60] [60] Beckers JM. A proposal to the National Science Foundation, in the NOAO 8M Telescope Description Vol. II, by the Association for University Research in Astronomy. 1989.

    [62] [62] Stroebele S, Arsenault R, Bacon R, Biasi R, Bonaccini-Calia D, Downing M, Conzelmann R, Delabre B, Donaldson R, Duchateau M, et al. The eso adaptive optics facility. In: Advances in Adaptive Optics II, vol. 6272. International Society for Optics and Photonics; 2006. p. 62720.

    [63] [63] Myers RM. Recent progress and perspectives for GLAO and MOAO. Proc. SPIE 7736, Adaptive Optics Systems II, 773622. 2010. .

    [65] [65] Esposito S, Riccardi A, Pinna E, Puglisi A, Quirós-Pacheco F, Arcidiacono C, et al. Large Binocular Telescope Adaptive Optics System: new achievements and perspectives in adaptive optics. Proc. SPIE 8149, Astronomical Adaptive Optics Systems and Applications IV, 814902. 2011. .

    [66] [66] Close LM, Gasho V, Kopon D, Hinz PM, Hoffmann WF, Uomoto A, et al. The Magellan Telescope adaptive secondary AO system. Proc. SPIE 7015, Adaptive Optics Systems, 70150Y. 2008. . 247.

    [67] [67] Arsenault R, Biasi R, Gallieni D, Riccardi A, Lazzarini P, Hubin N, et al. A deformable secondary mirror for the VLT. Proc. SPIE 6272, Advances in Adaptive Optics II, 62720V. 2006. .

    [68] [68] Biasi R, Veronese D, Andrighettoni M, Angerer G, Gallieni D, Mantegazza M, Tintori M, Lazzarini P, Manetti M, Johns M, et al. Gmt adaptive secondary design. In: Adaptive Optics Systems II, vol. 7736, International Society for Optics and Photonics; 2010. p. 77363.

    [69] [69] Gallieni D, Tintori M, Mantegazza M, Anaclerio E, Crimella L, Acerboni M, Biasi R, Angerer G, Andrigettoni M, Merler A, et al. Voice-coil technology for the e-elt m4 adaptive unit. In: 1st AO4ELT conference-Adaptive Optics for Extremely Large Telescopes. EDP Sciences; 2010. p. 06002.

    [70] [70] Kuiper S, Jonker W, Maniscalco M, Priem H, Coolen C, Chun M, Baranec C, Lu J, Lai O. Adaptive Secondary Mirror development for the UH-88 telescope. In: AO4ELT6, Quebec, Canada; 2019. https://hal.archives-ouvertes.fr/hal-02384381

    [72] [72] Riccardi A, Brusa G, Salinari P, Gallieni D, Biasi R, Andrighettoni M, Martin HM. Adaptive secondary mirrors for the Large Binocular Telescope. Proc. SPIE 4839, Adaptive Optical System Technologies II, (7 February 2003). .

    [73] [73] Close LM, Males JR, Kopon D, Gasho V, Follette KB, Hinz P, et al. First closed-loop visible AO test results for the advanced adaptive secondary AO system for the Magellan Telescope: MagAO's performance and status. In: Adaptive Optics Systems III Article 84470X (Proceedings of SPIE - The International Society for Optical Engineering; Vol. 8447). 2012. .

    [74] [74] Close LM, Males JR, Follette KB, Hinz P, Morzinski K, Wu Y-L, et al. Into the blue: AO science with MagAO in the visible. Proc. SPIE 9148, Adaptive Optics Systems IV, 91481M. 2014. .

    [75] [75] Guo Y, Zhang A, Fan X, Rao C, Wei L, Xian H, et al. First light of the deformable secondary mirror-based adaptive optics system on 1.8m telescope. Proc. SPIE 9909, Adaptive Optics Systems V, 99091D. 2016. .

    [76] [76] Guo YM, Chen KL, Zhou JH, Li ZD, Han WY, et al. High-resolution visible imaging with piezoelectric deformable secondary mirror: experimental results at the 1.8-m adaptive telescope. Opto-Electron Adv. 2023;6:230039.

    [83] [83] Milli J, Mouillet D, Fusco T, Girard J, Masciadri E, Pena E, Sauvage J-F, Reyes C, Dohlen K, Beuzit J-L, et al. Performance of the extreme-ao instrument vlt/sphere and dependence on the atmospheric conditions. arXiv preprint arXiv:1710.05417 (2017)

    [84] [84] Meeker SR, Truong TN, Roberts JE, Shelton JC, Fregoso SF, Burruss RS, Dekany RG, Wallace JK, Baker JW, Heffner CM, Mawet D, Rykoski KM, Tesch JA, Vasisht G. Design and performance of the PALM-3000 3.5 kHz upgrade. In: Schreiber L, Schmidt D, Vernet E (eds.) Adaptive Optics Systems VII, vol. 11448, 2020. p. 192–204. .

    [86] [86] Macintosh B, Graham J, Palmer D, Doyon R, Gavel D, Larkin J, et al. The Gemini Planet Imager. In: Ellerbroek BL, Calia DB (eds.) Advances in Adaptive Optics II, vol. 6272, 2006. p. 177–188. .

    [87] [87] Graham JR, Macintosh B, Doyon R, Gavel D, Larkin J, Levine M, Oppenheimer B, Palmer D, Saddlemyer L, Sivaramakrishnan A, et al. Ground-based direct detection of exoplanets with the gemini planet imager (GPI), 2007. arXiv preprint arXiv:0704.1454

    [90] [90] Oppenheimer BR, Beichman C, Brenner D, Burruss R, Cady E, Crepp J, et al. Project 1640: the world’s first ExAO coronagraphic hyperspectral imager for comparative planetary science. In: Ellerbroek BL, Marchetti E, Véran J-P (eds.) Adaptive Optics Systems III, vol. 8447, 2012. p. 736–748. .

    [91] [91] van Holstein RG, Girard JH, De Boer J, Snik F, Milli J, Stam D, Ginski C, Mouillet D, Wahhaj Z, Schmid HM, et al. Polarimetric imaging mode of vlt/sphere/irdis-ii. characterization and correction of instrumental polarization effects. Astron Astrophys. 2020;633:64

    [92] [92] Fusco T, Petit C, Rousset G, Sauvage J-F, Dohlen K, Mouillet D, et al. Design of the extreme AO system for SPHERE, the planet finder instrument of the VLT. Proc. SPIE 6272, Advances in Adaptive Optics II, 62720K. 2006. .

    [93] [93] Fusco T, Sauvage J-F, Petit C, Costille A, Dohlen K, Mouillet D, et al. Final performance and lesson-learned of SAXO, the VLT-SPHERE extreme AO: from early design to on-sky results. Proc. SPIE 9148, Adaptive Optics Systems IV, 91481U. 2014. .

    [94] [94] Chauvin G, Desidera S, Lagrange A-M, Vigan A, Gratton R, Langlois M, et al. Discovery of a warm, dusty giant planet around HIP 65426. Astron Astrophys. 2017;605:9. . https://arxiv.org/abs/1707.01413

    [96] [96] Milli J, Hibon P, Christiaens V, Choquet É, Bonnefoy M, Kennedy GM, et al. Discovery of a low-mass companion inside the debris ring surrounding the F5V star HD 206893. Astron Astrophys. 2017;597:2. . https://arxiv.org/abs/1612.00333

    [98] [98] Guyon O, Martinache F, Clergeon C, Russell R, Groff T, Garrel V. Wavefront control with the subaru coronagraphic extreme adaptive optics (scexao) system. In: Astronomical Adaptive Optics Systems and Applications IV, vol. 8149. International Society for Optics and Photonics; 2011. p. 814908.

    [102] [102] Gendron E, Assémat F, Hammer F, Jagourel P, Chemla F, Laporte P, Puech M, Marteaud M, Zamkotsian F, Liotard A, Conan J-M, Fusco T, Hubin N. FALCON: multi-object AO. Compt Rendus Phys. 2005;6(10):1110–7.

    [103] [103] Marchetti E, Brast R, Delabre B, Donaldson R, Fedrigo E, Frank C, et al. Mad: practical implementation of mcao concepts. Compt Rendus Phys. 2005;6(10):1118–28.

    [104] [104] Neichel B, Rigaut F. First light for the Gemini Multi-Conjugate Adaptive Optics System. Spie Newsroom. 2012. .

    [105] [105] Rigaut F, Neichel B, Boccas M, d’Orgeville C, Vidal F, van Dam MA, Arriagada G, Fesquet V, Galvez RL, Gausachs G, et al. Gemini multiconjugate adaptive optics system review–i. design, trade-offs and integration. Mon Not R Astron Soc. 2014;437(3):2361–75.

    [106] [106] Neichel B, Rigaut F, Vidal F, van Dam MA, Garrel V, Carrasco ER, Pessev P, Winge C, Boccas M, d’Orgeville C, et al. Gemini multiconjugate adaptive optics system review–ii. commissioning, operation and overall performance. Mon Not R Astron Soc. 2014;440(2):1002–19.

    [109] [109] Marchetti E, Brast R, Delabre B, Donaldson R, Fedrigo E, Frank C, Hubin N, Kob J, Lizon J-L, Marchesi M, et al. On-sky testing of the multi-conjugate adaptive optics demonstrator. Messenger 2007;129:8–13.

    [110] [110] Marchetti E, Brast R, Delabre B, Donaldson R, Fedrigo E, Frank C, Hubin N, Kolb J, Le Louarn M, Lizon J-L, et al. Mad on-sky results in star oriented mode. In: Adaptive Optics: Methods, Analysis and Applications. Optica Publishing Group; 2007. p. 2.

    [111] [111] Hippler S. Adaptive Optics for Extremely Large Telescopes. J Astron Instrum. 2019;8(2):1950001–322. . https://arxiv.org/abs/1808.02693

    [112] [112] van der Luehe O, Soltau D, Berkefeld T, Schelenz T. KAOS: adaptive optics system for the Vacuum Tower Telescope at Teide Observatory. Proc. SPIE 4853, Innovative Telescopes and Instrumentation for Solar Astrophysics. 2003. .

    [113] [113] Berkefeld T, Soltau D, von der Luehe O. Results of the Multi-conjugate Adaptive Optics System at the German Solar Telescope, Tenerife. Proc. SPIE 5903, Astronomical Adaptive Optics Systems and Applications II, 59030O. 2005. .

    [114] [114] Langlois M,Moretto G, Richards K, Hegwer S, Rimmele TR. Solar multiconjugate adaptive optics at the dunn solar telescope: preliminary results. In: Advancements in Adaptive Optics, Proceedings of the SPIE, Volume 5490, 2004. pp. 59–66.

    [115] [115] Schmidt D, Berkefeld T, Heidecke F, Fischer A, von der Lühe O, Soltau D. GREGOR MCAO looking at the Sun. Proc. SPIE 9148, Adaptive Optics Systems IV, 91481T. 2014. .

    [116] [116] Goode PR, Denker CJ, Didkovsky LI, Kuhn J, Wang H. 1.6 m solar telescope in big bear-the nst. J Korean Astron Soc. 2003;36(spc1):125–33.

    [117] [117] Langlois M, Moretto G, Béchet C, Montilla I, Tallon M, Goode P, et al. Concept for Solar Multi-Conjugate Adaptive Optics at Big Bear Observatory. 3rd AO4ELT Conference - Adaptive Optics for Extremely Large Telescopes. 62-. 2013. .

    [119] [119] Yan J, Zhou R, Yu X. Calculation of the isoplanatic patch for multiconjugate adaptive optics. Opt Eng. 1993;32(12). .

    [122] [122] Zhong XC, Wang SJ, Wu YQ. Study of the Conjugate Height for Solar Multi-Conjugate Adaptive Optics. Applied Mechanics & Materials. 336-338.1(2013):290-294.

    [127] [127] Yuan G, Zhao L, Wu P, Wang W. A time-division correction method for adaptive optics system. In: Journal of Physics: Conference Series, vol. 2093. IOP Publishing; 2021. p. 012038.

    [135] [135] Zhang L, Bao H, Rao X, et al. Ground-layer adaptive optics for the New Vacuum Solar Telescope: Instrument description and first results. Sci China Phys Mech Astron. 2023;66:269611. .

    [138] [138] Conan R, Bradley C, Lardière O, Blain C, Venn K, Andersen D, et al. Raven: a harbinger of multi-object adaptive optics-based instruments at the Subaru Telescope. Proc. SPIE 7736, Adaptive Optics Systems II, 77360T. 2010. .

    [139] [139] Lardière O, Andersen D, Blain C, Bradley C, Gamroth D, Jackson K, et al. Multi-object adaptive optics on-sky results with Raven. Proc. SPIE 9148, Adaptive Optics Systems IV, 91481G. 2014. .

    [140] [140] Rigaut F, Rousset G, Kern P, Fontanella J, Gaffard J, Merkle F, Léna P. Adaptive optics on a 3.6-m telescope-results and performance. Astron Astrophys. 1991;250:280–90.

    [141] [141] Rousset G, Beuzit J-L, Hubin NN, Gendron E, Madec PY, Boyer C, et al. Performance and results of the COME-ON+ adaptive optics system at the ESO 3.6-m telescope. Proc. SPIE 2201, Adaptive Optics in Astronomy. 1994. .

    [143] [143] Wizinowich P, Dekany R, Gavel D, Max C, Adkins S, Bauman B, et al. Wm keck observatory’s next generation adaptive optics facility. 2008;7736.

    [144] [144] Ono YH, Minowa Y, Guyon O, Clergeon CS, Mieda E, Lozi J, et al. Overview of AO activities at Subaru Telescope. Proc. SPIE 11448, Adaptive Optics Systems VII, 114480K. 2020. .

    [145] [145] Wenhan J. Overview of adaptive optics development. Opto-Electron Eng. 2018;45(3):170489–117048915.

    [147] [147] Jiang W, Li M, Tang G, Rao C, Ling N, Guan C, et al. Infrared adaptive optics system of the 2.16-m telescope and its wavefront detecting error and performance analysis. Proc. SPIE 2828, Image Propagation through the Atmosphere. 1996. .

    [148] [148] Jiang W, Tang G, Li M, Ling N, Rao C, Guan C, et al. 21-element infrared adaptive optics system at 2.16-m telescope. Proc. SPIE 3762, Adaptive Optics Systems and Technology. 1999. .

    [149] [149] Rao C, Jiang W, Zhang Y, Li M, Ling N, Zhang X, et al. Upgrade on 61-element adaptive optical system for 1.2-m telescope of Yunnan Observatory. Proc. SPIE 5490, Advancements in Adaptive Optics. 2004. .

    [150] [150] Tang G, Rao C, Sheng F, Zhang X, Jiang W. Performance and test results of a 61-element adaptive optics system on the 1.2-m telescope of Yunnan Observatory. Proc. SPIE 4926, Adaptive Optics and Applications II. 2002. .

    [151] [151] Rao C, Jiang W, Zhang Y, Li M, Ling N, Zhang X, et al. Performance on the 61-element upgraded adaptive optical system for 1.2-m telescope of the Yunnan Observatory. Proc. SPIE 5639, Adaptive Optics and Applications III. 2004. .

    [152] [152] Rao C, Jiang W, Zhang Y, Ling N, Zhang X, Xian H, et al. Progress on the 127-element adaptive optical system for 1.8m telescope. Proc. SPIE 7015, Adaptive Optics Systems, 70155Y. 2008. .

    [153] [153] Rao C, Wei K, Zhang X, Zhang A, Zhang Y, Xian H, et al. First observations on the 127-element adaptive optical system for 1.8m telescope. Proc. SPIE 7654, 5th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Large Mirrors and Telescopes, 76541H. 2010. .

    [154] [154] and, and: An active coronagraph using a liquid crystal array for exoplanet imaging: principle and testing. Res Astron Astrophys. 2012;12(5):591.

    [155] [155] Wang C, hu L, Xu H, Wang Y, Li D, Wang S, Mu Q, Yang C, Cao Z, Lu X, Xuan l, Jiang W, Ling N, Tang G, Li M, Shen F, Rao C, Zhu Y, Xu B. Wavefront detection method of a single-sensor based adaptive optics system. 2015;4.

    [156] [156] Ellerbroek B, Britton M, Dekany R, Gavel D, Herriot G, Macintosh B, Stoesz J. Adaptive optics for the thirty meter telescope. In: Astronomical Adaptive Optics Systems and Applications II, vol. 5903. International Society for Optics and Photonics; 2005. p. 590304.

    [158] [158] Johns M, McCarthy P, Raybould K, Bouchez A, Farahani A, Filgueira J, et al. Giant Magellan Telescope: overview. Proc. SPIE 8444, Ground-based and Airborne Telescopes IV, 84441H. 2012. .

    [163] [163] Cao W, Gorceix N, Coulter R, Ahn K, Rimmele T, Goode PR. Scientific instrumentation for the 1.6 m new solar telescope in big bear. Astronomische Nachr. 2010;331(6):636–9.

    [164] [164] Rimmele TR. Solar adaptive optics. In: Wizinowich P.L. (ed.) Adaptive Optical Systems Technology, vol. 4007, 2000. p. 218–231. .

    [165] [165] Rao Changhui Z.L.e.a. Zhu Lei: Development of solar adaptive optics. Opto-Electron Eng. 2018;45(3):170733–117073311.

    [166] [166] Rimmele TR, Richards K, Hegwer S, Fletcher S, Gregory S, Moretto G, Didkovsky LV, Denker CJ, Dolgushin A, Goode PR, Langlois M, Marino J, Marquette W. First results from the NSO/NJIT solar adaptive optics system. In: Fineschi S, Gummin MA (eds.) Telescopes and Instrumentation for Solar Astrophysics, vol. 5171, 2004. p. 179–186. .

    [168] [168] Shumko S, Gorceix N, Choi S, Kellerer A, Cao W, Goode P, Abramenko V, Richards K, Rimmele T, Marino J. Ao-308: The high-order adaptive optics system at big bear solar observatory, vol. 9148, 2014. p. 914835.

    [169] [169] Hardy JW. Solar Imaging Experiment: Final Report, Feb. 1979 – Jun. 1980, AFGL-TR-80-0338. Lexington, MA: Air Force Geophysics Laboratory, Hanscom AFB; 1980. (Cited on page 19).

    [170] [170] Rimmele TR, Radick RR. Solar adaptive optics at the National Solar Observatory. In: Bonaccini D, Tyson RK (eds.) Adaptive Optical System Technologies. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 3353, 1998. p. 72–81.

    [171] [171] Schmidt W, von der Lühe O, Volkmer R, Denker C, Solanki SK, Balthasar H, Bello González N, Berkefeld T, Collados Vera M, Hofmann A, Kneer F, Lagg A, Puschmann KG, Schmidt D, Sobotka M, Soltau D, Strassmeier KG. The GREGOR Solar Telescope on Tenerife. In: Rimmele TR, Tritschler A, Wöger F, Collados Vera M, Socas-Navarro H, Schlichenmaier R, Carlsson M, Berger T, Cadavid A, Gilbert PR, Goode PR, Knölker M (eds.) Second ATST-EAST Meeting: Magnetic Fields from the Photosphere to the Corona. Astronomical Society of the Pacific Conference Series, vol. 463, 2012. p. 365. http://arxiv.org/abs/1202.4289

    [172] [172] Berkefeld T, Soltau D, von der Luhe OFH. Second-generation adaptive optics for the 1.5 m solar telescope GREGOR, Tenerife. Proc. SPIE 5490, Advancements in Adaptive Optics. 2004. .

    [174] [174] Berkefeld T, Schmidt D, Soltau D, Heidecke F, Fischer A. The adaptive optics system of the 1.5m GREGOR solar telescope: four years of operation. Proc. SPIE 9909, Adaptive Optics Systems V, 990924. 2016. .

    [177] [177] Rimmele TR, Warner M, Keil SL, Goode PR, Knölker M, Kuhn JR, et al. The Daniel K. Inouye Solar Telescope - Observatory Overview. Sol Phys. 2020;295(12):172.

    [178] [178] Chang-HuiRao, Wen-HanJiang, ChengFang, NingLing, Wei-ChaoZhou, Ming-DeDing, Xue-JunZhang, Dong-HongChen, meiLi, Xiu-FaGao: A tilt-correction adaptive optical system for the solar telescope of nanjing university. Res Astron Astrophys. 2003;(6).

    [179] [179] Rao C-h, Jiang W-h, Ling N, Beckers JM. Tracking algorithms for low-contrast extended objects. Chin Astron Astrophys. 2002;26(1):115–24. .

    [183] [183] Rao C, Gu N, Rao X, Li C, Zhang L, Huang J, Kong L, Zhang M, Cheng Y, Pu Y, Bao H, Guo Y, Liu Y, Yang J, Libo Z, Wang C, Fang K, Zhang X, Chen D, Ma W. First light of the 1.8-m solar telescope-clst. Sci China Phys Mech Astron. 2020;63.

    [184] [184] Johns M, McCarthy P, Raybould K, Bouchez A, Farahani A, Filgueira J, Jacoby G, Shectman S, Sheehan M. Giant Magellan Telescope: overview. In: Stepp LM, Gilmozzi R, Hall HJ (eds.) Ground-based and Airborne Telescopes IV. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 8444, 2012. p. 84441.

    [185] [185] Ellerbroek B. The TMT Adaptive Optics Program.

    [186] [186] Busoni L, Agapito G, Plantet C, Oberti S, Verinaud C, Le Louarn M, et al. Adaptive optics design status of maory, the mcao system of European elt. 2020. .

    [187] [187] Rimmele T, Hegwer S, Marino J, Richards K, Schmidt D, Waldmann T, Woeger F. Solar multi-conjugate adaptive optics at the dunn solar telescope. In: Array (ed.) 1st AO4ELT Conference - Adaptive Optics for Extremely Large Telescopes, 2010. p. 08002. .

    [188] [188] Quintero Noda C, Schlichenmaier R, Bellot Rubio LR, Löfdahl MG, Khomenko E, Jurcak J, Leenaarts J, Kuckein C, González Manrique SJ, Gunar S, Nelson CJ, de la Cruz Rodríguez J, Tziotziou K, Tsiropoula G, Aulanier G, Collados M, the EST team: The European Solar Telescope. 2022. http://arxiv.org/abs/2207.10905

    [189] [189] Berkefeld T. The ao and mcao for the 4m european solar telescope, 2017.

    Tools

    Get Citation

    Copy Citation Text

    Changhui Rao, Libo Zhong, Youming Guo, Min Li, Lanqiang Zhang, Kai Wei. Astronomical adaptive optics: a review[J]. PhotoniX, 2024, 5(1): 16

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: May. 12, 2023

    Accepted: Jan. 16, 2024

    Published Online: Jan. 23, 2025

    The Author Email: Rao Changhui (chrao@ioe.ac.cn)

    DOI:10.1186/s43074-024-00118-7

    Topics