Laser & Optoelectronics Progress, Volume. 60, Issue 11, 1106009(2023)

Progress on Quantum-Enhanced Time-Varying Parameter Estimation

Kaimin Zheng1,2,3,4 and Lijian Zhang1,2,3,4、*
Author Affiliations
  • 1National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210023, Jiangsu, China
  • 2Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Nanjing 210023, Jiangsu, China
  • 3Collaborative Innovation Center of Advanced Microstructures, Nanjing 210023, Jiangsu, China
  • 4College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, Jiangsu, China
  • show less
    References(67)

    [1] Giovannetti V, Lloyd S, Maccone L. Advances in quantum metrology[J]. Nature Photonics, 5, 222-229(2011).

    [2] Caves C M. Quantum-mechanical radiation-pressure fluctuations in an interferometer[J]. Physical Review Letters, 45, 75-79(1980).

    [3] Braunstein S L. Quantum limits on precision measurements of phase[J]. Physical Review Letters, 69, 3598-3601(1992).

    [4] Holland M J, Burnett K. Interferometric detection of optical phase shifts at the Heisenberg limit[J]. Physical Review Letters, 71, 1355-1358(1993).

    [5] Boto A N, Kok P, Abrams D S et al. Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit[J]. Physical Review Letters, 85, 2733-2736(2000).

    [6] Ono T, Okamoto R, Takeuchi S. An entanglement-enhanced microscope[J]. Nature Communications, 4, 2426(2013).

    [7] Pezzé L, Smerzi A. Mach-Zehnder interferometry at the Heisenberg limit with coherent and squeezed-vacuum light[J]. Physical Review Letters, 100, 073601(2008).

    [8] Jing J T, Liu C J, Zhou Z F et al. Realization of a nonlinear interferometer with parametric amplifiers[J]. Applied Physics Letters, 99, 011110(2011).

    [9] Ou Z Y. Enhancement of the phase-measurement sensitivity beyond the standard quantum limit by a nonlinear interferometer[J]. Physical Review A, 85, 023815(2012).

    [10] Anderson B E, Gupta P, Schmittberger B L et al. Phase sensing beyond the standard quantum limit with a variation on the SU(1, 1) interferometer[J]. Optica, 4, 752-756(2017).

    [11] Hudelist F, Kong J, Liu C J et al. Quantum metrology with parametric amplifier-based photon correlation interferometers[J]. Nature Communications, 5, 3049(2014).

    [12] Xu Y K, Zhao T, Kang Q Q et al. Phase sensitivity of an SU(1, 1) interferometer in photon-loss via photon operations[J]. Optics Express, 31, 8414-8427(2023).

    [13] Chang S K, Ye W, Zhang H A et al. Improvement of phase sensitivity in an SU(1, 1) interferometer via a phase shift induced by a Kerr medium[J]. Physical Review A, 105, 033704(2022).

    [14] Zhang L J, Datta A, Walmsley I A. Precision metrology using weak measurements[J]. Physical Review Letters, 114, 210801(2015).

    [15] Arvidsson-Shukur D R M, Yunger Halpern N, Lepage H V et al. Quantum advantage in postselected metrology[J]. Nature Communications, 11, 3775(2020).

    [16] Hofmann H F, Goggin M E, Almeida M P et al. Estimation of a quantum interaction parameter using weak measurements: theory and experiment[J]. Physical Review A, 86, 040102(2012).

    [17] Xu L A, Liu Z X, Datta A et al. Approaching quantum-limited metrology with imperfect detectors by using weak-value amplification[J]. Physical Review Letters, 125, 080501(2020).

    [18] Jordan A N, Martínez-Rincón J, Howell J C. Technical advantages for weak-value amplification: when less is more[J]. Physical Review X, 4, 011031(2014).

    [19] Chen G, Zhang L J, Zhang W H et al. Achieving heisenberg-scaling precision with projective measurement on single photons[J]. Physical Review Letters, 121, 060506(2018).

    [20] Pang S S, Brun T A. Improving the precision of weak measurements by postselection measurement[J]. Physical Review Letters, 115, 120401(2015).

    [21] Zou Y Q, Wu L N, Liu Q et al. Beating the classical precision limit with spin-1 Dicke states of more than 10, 000 atoms[J]. Proceedings of the National Academy of Sciences of the United States of America, 115, 6381-6385(2018).

    [22] Feldmann P, Klempt C, Smerzi A et al. Interferometric order parameter for excited-state quantum phase transitions in Bose-Einstein condensates[J]. Physical Review Letters, 126, 230602(2021).

    [23] Pezzè L, Smerzi A, Oberthaler M K et al. Quantum metrology with nonclassical states of atomic ensembles[J]. Reviews of Modern Physics, 90, 035005(2018).

    [24] Zheng K M, Xu H C, Zhang A N et al. Ab initio phase estimation at the shot noise limit with on-off measurement[J]. Quantum Information Processing, 18, 1-12(2019).

    [25] Giovannetti V, Lloyd S, Maccone L. Quantum-enhanced positioning and clock synchronization[J]. Nature, 412, 417-419(2001).

    [26] Banaszek K, Demkowicz-Dobrzański R, Walmsley I A. Quantum states made to measure[J]. Nature Photonics, 3, 673-676(2009).

    [27] Demkowicz-Dobrzanski R, Dorner U, Smith B J et al. Quantum phase estimation with lossy interferometers[J]. Physical Review A, 80, 013825(2009).

    [28] Nagata T, Okamoto R, O’Brien J L et al. Beating the standard quantum limit with four-entangled photons[J]. Science, 316, 726-729(2007).

    [29] Liu G Q, Zhang Y R, Chang Y C et al. Demonstration of entanglement-enhanced phase estimation in solid[J]. Nature Communications, 6, 6726(2015).

    [30] Xie T Y, Zhao Z Y, Kong X et al. Beating the standard quantum limit under ambient conditions with solid-state spins[J]. Science Advances, 7, eabg9204(2021).

    [31] Abadie J, Abbott B P, Abbott R et al. A gravitational wave observatory operating beyond the quantum shot-noise limit[J]. Nature Physics, 7, 962-965(2011).

    [32] Goda K, Miyakawa O, Mikhailov E E et al. A quantum-enhanced prototype gravitational-wave detector[J]. Nature Physics, 4, 472-476(2008).

    [33] Kura N, Ueda M. Standard quantum limit and Heisenberg limit in function estimation[J]. Physical Review Letters, 124, 010507(2020).

    [34] Berry D W, Wiseman H M. Adaptive phase measurements for narrowband squeezed beams[J]. Physical Review A, 73, 063824(2006).

    [35] Tsang M. Optimal waveform estimation for classical and quantum systems via time-symmetric smoothing[J]. Physical Review A, 80, 033840(2009).

    [36] Bonato C, Berry D W. Adaptive tracking of a time-varying field with a quantum sensor[J]. Physical Review A, 95, 052348(2017).

    [37] Shankar A, Greve G P, Wu B C et al. Continuous real-time tracking of a quantum phase below the standard quantum limit[J]. Physical Review Letters, 122, 233602(2019).

    [38] Giunta M, Hänsel W, Fischer M et al. Real-time phase tracking for wide-band optical frequency measurements at the 20th decimal place[J]. Nature Photonics, 14, 44-49(2020).

    [39] DiMario M T, Becerra F E. Phase tracking for sub-shot-noise-limited receivers[J]. Physical Review Research, 2, 023384(2020).

    [40] Madsen C N, Valdetaro L, Mølmer K. Quantum estimation of a time-dependent perturbation[J]. Physical Review A, 104, 052621(2021).

    [41] Berry D W, Tsang M, Hall M J W et al. Quantum Bell-Ziv-Zakai bounds and Heisenberg limits for waveform estimation[J]. Physical Review X, 5, 031018(2015).

    [42] Helstrom C W. Quantum detection and estimation theory[J]. Journal of Statistical Physics, 1, 231-252(1969).

    [43] Tsang M, Wiseman H M, Caves C M. Fundamental quantum limit to waveform estimation[J]. Physical Review Letters, 106, 090401(2011).

    [44] Berry D W, Hall M J W, Wiseman H M. Stochastic Heisenberg limit: optimal estimation of a fluctuating phase[J]. Physical Review Letters, 111, 113601(2013).

    [45] Berry D W, Wiseman H M. Adaptive quantum measurements of a continuously varying phase[J]. Physical Review A, 65, 043803(2002).

    [46] Tsang M, Shapiro J H, Lloyd S. Quantum theory of optical temporal phase and instantaneous frequency. II. continuous-time limit and state-variable approach to phase-locked loop design[J]. Physical Review A, 79, 053843(2009).

    [47] Dinani H T, Berry D W. Adaptive estimation of a time-varying phase with a power-law spectrum via continuous squeezed states[J]. Physical Review A, 95, 063821(2017).

    [48] Zheng K M, Mi M H, Wang B et al. Quantum-enhanced stochastic phase estimation with the SU(1, 1) interferometer[J]. Photonics Research, 8, 1653-1661(2020).

    [49] Song Q, Li H J, Huang J Z et al. Adaptive time-varying parameter estimation via weak measurement[J]. Physical Review Applied, 18, 044031(2022).

    [50] Wheatley T A, Berry D W, Yonezawa H et al. Adaptive optical phase estimation using time-symmetric quantum smoothing[J]. Physical Review Letters, 104, 093601(2010).

    [51] Kou J L, Ding M, Feng J et al. Microfiber-based Bragg gratings for sensing applications: a review[J]. Sensors, 12, 8861-8876(2012).

    [52] Mescia L, Prudenzano F. Advances on optical fiber sensors[J]. Fibers, 2, 1-23(2013).

    [53] Xu Y P, Lu P, Chen L A et al. Recent developments in micro-structured fiber optic sensors[J]. Fibers, 5, 3(2017).

    [54] Zhang L D, Zheng K M, Liu F et al. Quantum-limited fiber-optic phase tracking beyond range[J]. Optics Express, 27, 2327-2334(2019).

    [55] Yonezawa H, Nakane D, Wheatley T A et al. Quantum-enhanced optical-phase tracking[J]. Science, 337, 1514-1517(2012).

    [56] Iwasawa K, Makino K, Yonezawa H et al. Quantum-limited mirror-motion estimation[J]. Physical Review Letters, 111, 163602(2013).

    [58] Colangelo G, Ciurana F M, Bianchet L C et al. Simultaneous tracking of spin angle and amplitude beyond classical limits[J]. Nature, 543, 525-528(2017).

    [59] Jiménez-Martínez R, Kołodyński J, Troullinou C et al. Signal tracking beyond the time resolution of an atomic sensor by Kalman filtering[J]. Physical Review Letters, 120, 040503(2018).

    [60] Zhang C, Mølmer K. Estimating a fluctuating magnetic field with a continuously monitored atomic ensemble[J]. Physical Review A, 102, 063716(2020).

    [61] Turner E, Wu S H, Li X Z et al. Real-time magnetometry with coherent population trapping in a nitrogen-vacancy center[J]. Physical Review A, 105, L010601(2022).

    [62] Turner E, Wu S H, Li X Z et al. Spin-based continuous Bayesian magnetic-field estimations aided by feedback control[J]. Physical Review A, 106, 052603(2022).

    [63] Cooper G M, Hausman R. A molecular approach[J]. Sunderland: Sinauer Associates(2000).

    [64] Harris T K, Keshwani M M. Measurement of enzyme activity[M]. Methods in enzymology, 57-71(2009).

    [65] Cimini V, Mellini M, Rampioni G et al. Adaptive tracking of enzymatic reactions with quantum light[J]. Optics Express, 27, 35245-35256(2019).

    [66] Spedalieri G, Piersimoni L, Laurino O et al. Detecting and tracking bacteria with quantum light[J]. Physical Review Research, 2, 043260(2020).

    [67] Gianani I, Albarelli F, Cimini V et al. Experimental function estimation from quantum phase measurements[J]. Physical Review A, 103, 042602(2021).

    Tools

    Get Citation

    Copy Citation Text

    Kaimin Zheng, Lijian Zhang. Progress on Quantum-Enhanced Time-Varying Parameter Estimation[J]. Laser & Optoelectronics Progress, 2023, 60(11): 1106009

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Fiber Optics and Optical Communications

    Received: May. 11, 2023

    Accepted: May. 23, 2023

    Published Online: Jun. 14, 2023

    The Author Email: Zhang Lijian (lijian.zhang@nju.edu.cn)

    DOI:10.3788/LOP231285

    Topics