Infrared Technology, Volume. 43, Issue 4, 301(2021)

Analysis of Interface Control Methods for InAs/GaSb Type-II Superlattice Materials Grown by MBE

Yang REN, Junbin LI, Gang QIN, Jin YANG, Yanhui LI, Xuchang ZHOU, Chunzhang YANG, Chao CHANG, Jincheng KONG*, and Dongsheng LI
Author Affiliations
  • [in Chinese]
  • show less
    References(70)

    [1] [1] Sai-Halasz G A, Tsu R, Esaki L. A new semiconductor superlattice[J]. Applied Physics Letters, 1977, 30(12): 651-653.

    [2] [2] Esaki L. InAs-GaSb superlattices-synthesized semiconductors and semimetals[J]. Journal of Crystal Growth, 1981, 52(1): 227-240.

    [3] [3] Smith D L, Mailhiot C. Proposal for strained type II superlattice infrared detectors[J]. Journal of Applied Physics, 1987, 62(6): 2545-2548.

    [4] [4] Mailhiot C, Smith D L. Electronic structure of (001) and (111) growth axis InAs-Ga1-xInxSb strained-layer superlattices[J]. J. Vac. Sci. Technol. B., 1987, 5(4): 1268-1273.

    [5] [5] Chow D H, MilesR H, Sderstrm J R, et al. Growth and characterization of InAs-Ga1-xInxSb strained-layer superlattices[J]. Applied Physics Letters, 1990, 56(15): 1418-1420.

    [6] [6] YANG M J, Bennett B R. InAs/GaSb infrared photovoltaic detector at 77 K[J]. Electronics Letters, 1994, 30(20): 1710-1711.

    [7] [7] Fuchs F, Weimer U, Pletschen W, et al. High performance InAs/ Ga1-xInxSb superlattice infrared photodiodes[J]. Applied Physics Letters, 1997, 71(22): 3251-3253.

    [8] [8] Manijeh Razeghi, Yajun Wei, Junjik Bae, et al. Type II InAs/GaSb superlattices for high-performance photodiodes and FPAs[A]. Proc. of SPIE[C]//2003, 5246: 501-511.

    [9] [9] Razeghi M, Wei Y, Hood A, et al. Type II superlattice photodetectors for MWIR to VLWIR focal plane arrays[C]//Proc. of SPIE, 2006, 6206: 62060N.

    [10] [10] Robert Rehm, Martin Walther, Johannes Schmitz, et al. 2nd and 3rd generation thermal imagers based on type-II superlattice photodiodes [C]//Proc. of SPIE, 2006, 6294: 6294041-6294047.

    [11] [11] Rodriguez J B, Plis E, Bishop & G, et al. nBn structure based on InAs/GaSb type-II strained layer superlattices[J]. Applied Physics Letters, 2007, 91(4): 043514.

    [12] [12] Kim H S, Plis E, Rodriguez J B, et al. Mid-IR focal plane array based on type-II InAs∕GaSb strain layer superlattice detector with nBn design[J]. Applied Physics Letters, 2008, 92(18): 183502.

    [13] [13] Gunapala S D, Ting D Z, Hill C J, et al. Demonstration of 1 k×1 k long-wave and mid-wave superlattice infrared focal plane array [C]//SPIE, 2010, 7808: 78080201-78080206.

    [14] [14] HUANG K W, Haddadi A, CHEN G, et al. Type-II superlattice dual-band LWIR imager with M-barrier and Fabry-Perot resonance[J]. Optics Letters, 2011, 36(13): 2560-2.

    [15] [15] Gautam N, Naydenkov M, Myers S, et al. Three color infrared detector using InAs/GaSb superlattices with unipolar barriers[J]. Appl. Phys. Lett. 2011, 98: 121106.

    [16] [16] Edward Kwei-wei Huang, Manijeh Razeghi. World’s first demonstration of type-II superlattice dual band 640×512 LWIR focal plane array[C]//Proc. of SPIE, 2012, 8268: 82680Z.

    [17] [17] Razeghi M, Haddadi A, Hoang A M, et al. High-performance bias-selectable dual-band mid-/long -wavelength infrared photodetectors and focal plane arrays based on InAs/GaSb Type-II superlattices[J]. Proceedings of SPIE - The International Society for Optical Engineering, 2013, 8704: 87040S.

    [18] [18] Hoang A M, Dehzangi A, Adhikary S, et al. High performance bias-selectable three-color short-wave/mid-wave/long-wave infrared photodetectors based on type-II InAs/GaSb/AlSb superlattices[J]. Rep, 2016, 6: 24144.

    [19] [19] Rogalski A, Antoszewski J, Faraone L. Third-generation infrared photodetector arrays[J]. Journal of applied physics, 2009, 105(9): 4.

    [20] [20] Mir R N, Frensley W R. Electrical design of InAs-Sb/GaSb superlattices for optical detectors using full band structure sp3s* tight-binding method and Bloch boundary conditions[J]. Journal of Applied Physics, 2013, 114(15): 153706.

    [21] [21] Nguyen B M, Bogdanov S, Pour S A, et al. Minority electron unipolar photodetectors based on type II InAs/GaSb/AlSb superlattices for very long wavelength infrared detection[J]. Applied Physics Letters, 2009, 95(18): 183502.

    [22] [22] WEI Y, Razeghi M, Brown G J, et al. Modeling type-II InAs/GaSb superlattices using empirical tight-binding method: new aspects[C]//Quantum Sensing and Nanophotonic Devices, International Society for Optics and Photonics, 2004, 5359: 301-309.

    [23] [23] Rogalski A. New material systems for third generation infrared detectors[C]//Ninth International Conference on Correlation Optics, International Society for Optics and Photonics, 2009, 7388: 73880J.

    [24] [24] Tobin S P, Hutchins M A, Norton P W. Composition and thickness control of thin LPE HgCdTe layers using x-ray diffraction[J]. Journal of Electronic Materials, 2000, 29(6): 781-791.

    [25] [25] Grein C H, Young P M, Flatte M E, et al. Long wavelength InAs/InGaSb infrared detectors: optimization of carrier lifetimes[J]. Journal of Applied Physics, 1995, 78(12): 7143-7152.

    [26] [26] Rodriguez J B, Christol P, Cerutti L, et al. MBE growth and characterization of type-II InAs/GaSb superlattices for mid-infrared detection[J]. Journal of Crystal Growth, 2005, 274(1): 6-13.

    [27] [27] Fuchs F, Weimer U, Pletschen W, et al. High performance InAs/Ga1.xInxSb superlattice infrared photodiodes[J]. Applied physics letters, 1997, 71(22): 3251-3253.

    [29] [29] Yano M, Yokose H, Iwai Y, et al. Surface-reaction of III-V compound semiconductors irradiated by As and Sb molecular-beams[J]. J. Cryst Growth, 1991, 111(1-4): 609.

    [30] [30] Twigg M E, Bennett B R, Thibado P M, et al. Interfacial disorder in InAs/GaSb superlattices[J]. Philosophical Magazine A, 1998, 77(1): 7-30.

    [31] [31] Jackson E M, Boishin G I, Aifer E H, et al. Arsenic cross-contamination in GaSb/InAs superlattices[J]. Journal of Crystal Growth, 2004, 270(3-4): 301-308.

    [32] [32] Chow D H, Miles R H, Hunter A T. Effects of interface Stoichiometry on the structural and electronic-properties of Ga1.xInxSb/InAs superlattices [J]. Journal of Vacuum Science & Technology B, 1992, 10(2): 888-91.

    [33] [33] WANG M W, Collins D A, McGill T C, et al. Ray photoelectron spectroscopy investigation of the mixed anion GaSb/InAs heterointerface[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 1993, 11(4): 1418-22.

    [34] [34] Bennett B R, Shanabrook B V, Wagner R J, et al. Interface composition control in InAs/GaSb superlattices[J]. Solid-state Electronics, 1994, 37(4-6): 733-737.

    [35] [35] Chow D H, Miles R H, Hunter A T, et al. Effects of interface stoichiometry on the structural and electronic properties of Ga1. xInxSb/InAs superlattices[J]. Journal of Vacuum Science & Technology B, 1992, 10(2): 888-891.

    [36] [36] Omaggio J P, Meyer J R, Wagner R J, et al. Determination of band gap and effective masses in InAs/GaInSb Superlattices[J]. Appl. Phys. Lett. 1992, 61(2): 207-209.

    [37] [37] Youngdale E R, Meyer J R, Hoffman C A, et al. Recombination lifetime in InAs-GaInSb superlattices[J]. J. Vac. Sci. Technol. B, 1994, 12(2): 1129-1135.

    [38] [38] Thibado P M, Bennett B R, Twigg M E, et al. Origins of interfacial disorder in GaSb/InAs superlattices[J]. Applied Physics Letters, 1995, 67(24): 3578-3580.

    [39] [39] Tahraoui A, Tomasini P, Lassabatere L, et al. Growth and optimization of InAs/GaSb and GaSb/InAs interfaces[J]. Applied Surface Science, 2000, 162: 425-429.

    [40] [40] Schmitz J, Wagner J, Fuchs F, et al. Optical and structural investigations of intermixing reactions at the interfaces of InAs/AlSb and InAs/GaSb quantum wells grown by molecularbeam epitaxy[J]. Journal of Crystal Growth, 1995, 150(1): 858-862.

    [41] [41] Booker G R, Klipstein P C, Lakrimi M, et al. Growth of InAs/GaSb strained layer superlattices II[J]. Journal of Crystal Growth, 1995, 146(1-4): 495-502.

    [42] [42] Daly M S, Symons D M, Lakrimi M, et al. Interface composition dependence of the band offset in InAs/GaSb [J]. Semiconductor Science and Technology, 1996, 11(5): 823-6.

    [43] [43] Young M H, Chow D H, Hunter A T, et al. Recent advances in Ga1?xInxSb/InAs superlattice IR detector materials[J]. Applied Surface Science, 1998, 123-124: 395-399.

    [44] [44] Steinshnider J, Weimer M, Kaspi R, et al. Visualizing interfacial structure at non-common-atom heterojunctions with cross-sectional scanning tunneling microscopy[J]. Physical Review Letters, 2000, 85(14): 2953-2956.

    [45] [45] Steinshnider J, Harper J, Weimer M, et al. Origin of antimony segregation in GaInSb/InAs strained-layer superlattices[J]. Physical Review Letters, 2000, 85(21): 4562-4565.

    [46] [46] Feenstra R M, Collins D A, Mcgill T C, et al. Scanning tunneling microscopy of InAs/GaSb superlattices with various growth conditions[J]. Superlattices and Microstructures, 1994, 15(2): 215-220.

    [47] [47] Nosho B Z, Bennett B R, Whitman L J, et al. Effects of As2 versus As4 on InAs/GaSb heterostructures: As-for-Sb exchange and film stability[J]. Journal of Vacuum Science & Technology B, 2001, 19(4): 1626-1630.

    [48] [48] Nosho B Z, Barvosacarter W, Yang M J, et al. Interpreting interfacial structure in cross-sectional STM images of III–V semiconductor heterostructures[J]. Surface Science, 2000, 465(3): 361-371.

    [49] [49] Plis E, Khoshakhlagh A, Myers S, et al. Molecular beam epitaxy growth and characterization of type-II InAs/GaSb strained layer superlattices for long-wave infrared detection[J]. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 2010, 28(3): C3G13-C3G18.

    [50] [50] WEI Y J, Razeghi M. Modeling of type-II InAs/GaSb superlattices using an empirical tight-binding method and interface engineering[J]. Physical Review B, 2004, 69(8): 085316.

    [51] [51] Szmulowicz F, Haugan H J, Brown G J, et al. Interfaces as design tools for short-period InAs/GaSb type-II superlattices for mid-infrared detectors[J]. Opto-Electronics Review, 2006, 14(1): 71-7.

    [52] [52] Luna E, Satpati B, Rodriguez J B, et al. Interfacial intermixing in InAs/GaSb short-period-superlattices grown by molecular beam epitaxy[J]. Appl. Phys. Lett., 2010, 96(2): 021904.

    [53] [53] Matthews J W, Blakeslee A E. Defects in epitaxial multilayers: I. Misfit dislocations[J]. Journal of Crystal Growth, 1974, 27: 118-125.

    [54] [54] Fritz I J, Picraux S T, Dawson L R, et al. Dependence of critical layer thickness on strain for InxGa1?xAs/GaAs strained-layer superlattices[J]. Applied Physics Letters, 1985, 46(10): 967-969.

    [55] [55] Razeghi M, WEI Y, GIN A, et al. High performance type II InAs/GaSb superlattices for mid, long, and very long wavelength infrared focal plane arrays[J]. Proceedings of SPIE, 2005, 5783: 86-97.

    [56] [56] WEI Y, Hood A, Yau H, et al. High-performance type-II InAs/GaSb superlattice photodiodes with cutoff wavelength around 7 ?m[J]. Applied Physics Letters, 2005, 86(9): 091109.

    [57] [57] Haugan H J, Szmulowicz F, Mahalingam K, et al. Short-period InAs/GaSb type-II superlattices for mid-infrared detectors[J]. Applied Physics Letters, 2005, 87(26): 261106.

    [58] [58] ZHANG X, Ryou J, Dupuis R D, et al. Improved surface and structural properties of InAs?GaSb superlattices on (001) GaSb substrate by introducing an InAsSb layer at interfaces[J]. Applied Physics Letters, 2007, 90(13): 131110.

    [59] [59] Sullivan G J, Ikhlassi A, Bergman J, et al. Molecular beam epitaxy growth of high quantum efficiency InAs/GaSb superlattice detectors[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2005, 23(3): 1144-1148.

    [60] [60] Waterman J R, Shanabrook B V, Wagner R J, et al. The effect of interface bond type on the structural and optical properties of GaSb/InAs superlattices[J]. Semiconductor Science and Technology, 1993, 8(1S): S106.

    [61] [61] XIE Q, Van Nostrand J E, Brown J L, et al. Arsenic for antimony exchange on GaSb, its impacts on surface morphology, and interface structure[J]. J. Appl. Phys., 1999, 86(1): 329-37.

    [62] [62] Khoshakhlagh A, Plis E, Myers S, et al. Optimization of InAs/GaSb type-II superlattice interfaces for long-wave (~8 m) infrared detection[J]. Journal of Crystal Growth, 2009, 311(7): 1901-1904.

    [63] [63] ZHONG M, Steinshnider J, Weimer M, et al. Combined x-ray diffraction/scanning tunneling microscopy study of segregation and interfacial bonding in type-II heterostructures[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2004, 22(3): 1593-1597.

    [64] [64] Plis E, Annamalai S, Posani K T, et al. Midwave infrared type-II InAs/GaSb superlattice detectors with mixed interfaces[J]. J. Appl. Phys., 2006, 100(1): 4.

    [65] [65] Horikoshi Y, Kawashima M, Yamaguchi H. Migration-enhanced epitaxy of GaAs and AlGaAs[J]. Japanese Journal of Applied Physics, 1988, 27(part 1): 169-179.

    [66] [66] Gadaleta C, Scamarcio G, Fuchs F, et al. Influence of the interface bond type on the far-infrared reflectivity of InAs/GaSb superlattices[J]. Journal of Applied Physics, 1995, 78(9): 5642-5644.

    [67] [67] Jasik A, Sankowska I, Pier.cinska D, et al. Blueshift of bandgap energy and reduction of non-radiative defect density due to precise control of InAs-on-GaSb interface in type-II InAs/GaSb superlattice[J]. Journal of Applied Physics, 2011, 110(12): 123103.

    [69] [69] Guo Jie, Sun Wei-Guo, Peng Zhen-Yu, et al. Interfaces in InAs/GaSb superlattices grown by molecular beam epitaxy[J]. Chinese Physics Letters, 2009, 26(4): 047802.

    [71] [71] ZHANG Y, MA W, CAO Y, et al. Long wavelength infrared InAs/GaSb superlattice photodetectors with InSb-like and mixed interfaces[J]. IEEE Journal of Quantum Electronics, 2011, 47(12): 1475-1479.

    [72] [72] WEI Y, MA W, ZHANG Y, et al. High structural quality of type II InAs/GaSb superlattices for very long wavelength infrared detection by interface control[J]. IEEE Journal of Quantum Electronics, 2012, 48(4): 512-515.

    [73] [73] Twigg M E, Bennett B R, Shanabrook B V, et al. Interfacial roughness in InAs/GaSb superlattices[J]. Applied Physics Letters, 1994, 64(25): 3476-3478.

    Tools

    Get Citation

    Copy Citation Text

    REN Yang, LI Junbin, QIN Gang, YANG Jin, LI Yanhui, ZHOU Xuchang, YANG Chunzhang, CHANG Chao, KONG Jincheng, LI Dongsheng. Analysis of Interface Control Methods for InAs/GaSb Type-II Superlattice Materials Grown by MBE[J]. Infrared Technology, 2021, 43(4): 301

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 19, 2020

    Accepted: --

    Published Online: Aug. 26, 2021

    The Author Email: Jincheng KONG (kongjincheng@163.com)

    DOI:

    Topics