Journal of the Chinese Ceramic Society, Volume. 51, Issue 8, 2037(2023)
Morphological Transformation of MnSiO3 and Its Antibacterial Property
[1] [1] XIU W J, SHAN J Y, YANG K L, et al. Recent development of nanomedicine for the treatment of bacterial biofilm infections[J]. View, 2021, 2(1): 20200065.
[2] [2] JIA B Q, DU X C, WANG W J, et al. Nanophysical antimicrobial strategies: a rational deployment of nanomaterials and physical stimulations in combating bacterial infections[J]. Adv Sci, 2022, 9(10): 2105252.
[3] [3] WANG Y, YANG Y N, SHI Y R, et al. Antibiotic-free antibacterial strategies enabled by nanomaterials: progress and perspectives[J]. Adv Mater, 2020, 32(18): 1904106.
[4] [4] GE C C, WU R F, CHONG Y, et al. Synthesis of Pt hollow nanodendrites with enhanced peroxidase-like activity against bacterial infections: implication for wound healing[J]. Adv Funct Mater, 2018, 28(28): 1801484.
[5] [5] WANG Z, LIU X Y, DUAN Y W, et al. Infection microenvironment- related antibacterial nanotherapeutic strategies[J]. Biomaterials, 2022, 280: 121249.
[6] [6] DUAN S, WU R N, XIONG Y H, et al. Multifunctional antimicrobial materials: from rational design to biomedical applications[J]. Prog Mater Sci, 2022, 125: 100887.
[7] [7] LIU Z W, ZHAO X Y, YU B R, et al. Rough carbon-iron oxide nanohybrids for near-infrared-II light-responsive synergistic antibacterial therapy[J]. ACS Nano, 2021, 15(4): 7482-7490.
[8] [8] NAHA P C, LIU Y, HWANG G, et al. Dextran-coated iron oxide nanoparticles as biomimetic catalysts for localized and pH-activated biofilm disruption[J]. ACS Nano, 2019, 13(5): 4960-4971.
[9] [9] LIU X P, YAN Z Q, ZHANG Y, et al. Two-dimensional metal-organic framework/enzyme hybrid nanocatalyst as a benign and self-activated cascade reagent for in vivo wound healing[J]. ACS Nano, 2019, 13(5): 5222-5230.
[10] [10] TAO Y, JU E G, REN J S, et al. Bifunctionalized mesoporous silica-supported gold nanoparticles: intrinsic oxidase and peroxidase catalytic activities for antibacterial applications[J]. Adv Mater, 2015, 27(6): 1097-1104.
[11] [11] YANG N, GUO H, CAO C Y, et al. Infection microenvironment- activated nanoparticles for NIR-II photoacoustic imaging-guided photothermal/chemodynamic synergistic anti-infective therapy[J]. Biomaterials, 2021, 275: 120918.
[12] [12] SHAN J Y, LI X, YANG K L, et al. Efficient bacteria killing by Cu2WS4 nanocrystals with enzyme-like properties and bacteria-binding ability[J]. ACS Nano, 2019, 13(12): 13797-13808.
[13] [13] HU D F, LI H, WANG B L, et al. Surface-adaptive gold nanoparticles with effective adherence and enhanced photothermal ablation of methicillin-resistant staphylococcus aureus biofilm[J]. ACS Nano, 2017, 11(9): 9330-9339.
[14] [14] REDDI A R, JENSEN L T, CULOTTA V C. Manganese homeostasis in saccharomyces cerevisiae[J]. Chem Rev, 2009, 109(10): 4722-4732.
[15] [15] NI D L, BU W B, EHLERDING E B, et al. Engineering of inorganic nanoparticles as magnetic resonance imaging contrast agents[J]. Chem Soc Rev, 2017, 46(23): 7438-7468.
[17] [17] CHEN Y, YE D L, WU M Y, et al. Break-up of two-dimensional MnO2 nanosheets promotes ultrasensitive pH-triggered theranostics of cancer[J]. Adv Mater, 2014, 26(41): 7019-7026.
[18] [18] SUN X, ZHANG G L, DU R H, et al. A biodegradable MnSiO3@Fe3O4 nanoplatform for dual-mode magnetic resonance imaging guided combinatorial cancer therapy[J]. Biomaterials, 2019, 194: 151-160.
[19] [19] LI X W, ZHOU H, NIU Z H, et al. In situ 3D-to-2D transformation of Manganese-based layered silicates for tumor-specific T1-weighted magnetic resonance imaging with high signal-to-noise and excretability[J]. ACS Appl Mater Interfaces, 2020, 12(22): 24644-24654.
[20] [20] TANG Z M, LIU Y Y, HE M Y, et al. Chemodynamic therapy: tumour microenvironment-mediated Fenton and Fenton-like reactions[J]. Angew Chem Int Ed, 2019, 58(4): 946-956.
[21] [21] LI X W, ZHAO W R, LIU X H, et al. Mesoporous Manganese silicate coated silica nanoparticles as multi-stimuli-responsive T1-MRI contrast agents and drug delivery carriers[J]. Acta Biomater, 2016, 30: 378-387.
[22] [22] NIU Z H, XIE M X, WEI Z C, et al. In situ structure transformation of a sprayed gel for pH-ultrasensitive nano-catalytic antibacterial therapy[J]. Adv Healthcare Mater, 2023: 2202441.
[23] [23] CAO S H, FAN J L, SUN W, et al. A novel Mn-Cu bimetallic complex for enhanced chemodynamic therapy with simultaneous glutathione depletion[J]. Chem Commun, 2019, 55(86): 12956-12959.
[24] [24] FAN X, WU X Z, YANG F, et al. A nanohook-equipped bionanocatalyst for localized near-infrared-enhanced catalytic bacterial disinfection[J]. Angew Chem Int Ed, 2022, 61(8): e202113833.
[25] [25] FAN X, YANG F, NIE C X, et al. Biocatalytic nanomaterials: a new pathway for bacterial disinfection[J]. Adv Mater, 2021, 33(33): 2100637.
Get Citation
Copy Citation Text
XIE Mingxiao, REN Luyao, LI Xiaowei. Morphological Transformation of MnSiO3 and Its Antibacterial Property[J]. Journal of the Chinese Ceramic Society, 2023, 51(8): 2037
Category:
Received: Feb. 7, 2023
Accepted: --
Published Online: Oct. 7, 2023
The Author Email: Mingxiao XIE (mingxiaoxiee@163.com)
CSTR:32186.14.