Infrared and Laser Engineering, Volume. 53, Issue 12, 20240364(2024)

Application of Alvarez lens in small movement infrared zoom lens

Bingrui ZHANG1, Zhiwang YANG2, Chenzhong ZHANG1, and Weihua ZHAO3
Author Affiliations
  • 1Tianjin Jinhang Institute of Technical Physics, Tianjin 300308, China
  • 2The Third Military Representative Office of Air Force Armament Department in Tianjin, Tianjin 301800, China
  • 3Troop 92862, Shantou 515074, China
  • show less
    Figures & Tables(14)
    Alvarez lens change focal length
    Fringe Zernike wave aberration coefficient of Alvarez lens when f'=50 mm. (a) d=5 mm, t=0.5 mm; (b) Aperture is 25 mm, t=0.5 mm; (c) Aperture is 25 mm, d=10 mm
    Wavefront aberration vs field, f'=50 mm, apeture is 25 mm, t=0.5 mm, d=10 mm
    Aberration field center on x direction with different apertures and d when f'=50 mm, t=0.5 mm
    Aberration field center on x direction vs t when f'=50 mm, aperture is 25 mm and d=10 mm
    Five group zoom lens
    Design result for zoom lens
    MTF for each zoom
    Optical power and decenter of Alvarez lens. (a) Relation between φ2 and φ4; (b) Relation between the decenter of Alvarez lens and the focal length
    Astigmatism field map
    Coma field map
    • Table 1. Correspondence between the order of Fringe Zernike polynomial and xy polynomial

      View table
      View in Article

      Table 1. Correspondence between the order of Fringe Zernike polynomial and xy polynomial

      Fringe Zernike termFringe Zernike polynomialxy polynomial
      7$ \left( {3{\rho ^3} - 2\rho } \right)\cos \theta $$ x,{x^3},x{y^2} $
      9$ 6{\rho ^4} - 6{\rho ^2} + 1 $$ {x^2},{y^2},{x^4},{x^2}{y^2},{y^4} $
      10$ {\rho ^3}\cos \left( {3\theta } \right) $$ {x^3},x{y^2} $
      14$ \left( {10{\rho ^5} - 12{\rho ^3} + 3\rho } \right)\cos \theta $$ x,{x^3},x{y^2},{x^5},{x^3}{y^2},x{y^4} $
      16$ 20{\rho ^6} - 30{\rho ^4} + 12{\rho ^2} - 1 $$ {x^2},{y^2},{x^4},{x^2}{y^2},{y^4},{x^6},{x^4}{y^2},{x^2}{y^4},{y^6} $
      17$ {\rho ^4}\cos \left( {4\theta } \right) $$ {x^4},{x^2}{y^2},{y^4} $
      19$ \left( {5{\rho ^5} - 4{\rho ^3}} \right)\cos \left( {3\theta } \right) $$ {x^3},x{y^2},{x^5},{x^3}{y^2},x{y^4} $
      28$ \left( {6{\rho ^6} - 5{\rho ^4}} \right)\cos \left( {4\theta } \right) $$ {x^4},{x^2}{y^2},{y^4},{x^6},{x^4}{y^2},{x^2}{y^4},{y^6} $
    • Table 2. Optical paramters for the zoom lens

      View table
      View in Article

      Table 2. Optical paramters for the zoom lens

      Optical paramtersValue
      F/#4
      Waveband3.7-4.8 μm
      FOV2.75°×2.2°-0.46°×0.37°
      f'100-600 mm
      Detector resolution Pixel size640×51215 μm
      Volume250 mm×187 mm×154 mm
    • Table 3. f'=600 mm Fringe Zernike polynomial coefficient

      View table
      View in Article

      Table 3. f'=600 mm Fringe Zernike polynomial coefficient

      Fringe Zernike term7th order xy polynomial3rd order xy polynomial
      AL1AL2SumTotalAL1AL2SumTotal
      Z70.17−0.20−0.030.00−1.410.00−1.41−1.37
      Z90.74−0.190.56−0.021.17−0.280.890.40
      Z10−0.140.09−0.05−0.051.18−0.131.041.06
      Z14−0.01−0.02−0.02−0.01−0.18−0.02−0.20−0.16
      Z160.550.000.550.010.110.000.11−0.43
      Z170.01−0.02−0.01−0.01−1.55−0.02−1.57−1.55
      Z190.000.010.020.010.120.010.130.12
      Z28−0.010.00−0.01−0.01−0.130.00−0.13−0.12
    Tools

    Get Citation

    Copy Citation Text

    Bingrui ZHANG, Zhiwang YANG, Chenzhong ZHANG, Weihua ZHAO. Application of Alvarez lens in small movement infrared zoom lens[J]. Infrared and Laser Engineering, 2024, 53(12): 20240364

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: 光学设计

    Received: Aug. 12, 2024

    Accepted: --

    Published Online: Jan. 16, 2025

    The Author Email:

    DOI:10.3788/IRLA20240364

    Topics