Optics and Precision Engineering, Volume. 21, Issue 4, 1032(2013)
Determination of vision-based relative state by modified unscented Kalman filter
[1] [1] KIRAN K G, DECLAN C H, JOHN L J, et al.. A vision-based DSP embedded navigation sensor [J]. IEEE Sensors Journal, 2002, 2(5): 428-442.
[2] [2] DEBO S, JOHN L C. Observability analysis of six degree of freedom configuration determination using vector observations[J]. J. Guid. Control. Dyn, 2002, 25(6): 1149-1157.
[3] [3] ROBERTO A, JOHN L C. Vision-based relative navigation for formation flying of spacecraft[C]. 2000 AIAA Guidance, Navigation, and Control Conference and Exhibit, 14-17 August, 2000, Denver, CO.
[4] [4] SON-GOO K. Kalman filtering for relative spacecraft attitude and position estimation[D]. Department of Mechanical & Aerospace Engineering State University of New York at Buffalo, 2005.
[5] [5] SON-GOO K, CRASSIDIS J, YANG C.Kalman filtering for relative spacecraft attitude and position estimation [J]. J. Guid. Control. Dyn, 2007, 30(1): 133-143.
[6] [6] TANG X J, YAN J, ZHONG D D. Square-root sigma-point kalman filtering for spacecraft relative navigation [J]. Acta Astronautica, 2010, 66(5-6): 704-713.
[7] [7] DAERO L, HENRY P. Vision-based relative state estimation using the unscented kalman filter [J]. International Journal of Aeronautical and Space Sciences, 2011, 12(1): 24-36.
[8] [8] YOUNG-GU L, HYOCHOONG B. Relative state estimation of satellite formation flying using kalman filter[C]. Proceedings of the 17th World Congress The International Federation of Automatic Control, Seoul, Korea, 2008.
[9] [9] HILL G W. Researches in the lunar theory [J]. American Journal of Mathematics, 1878, 1(1): 5-26.
[11] [11] CLOHESSY W, WILTSHIRE R. Terminal guidance system for satellite rendezvous [J]. Journal of the Aerospace Sciences, 1960, 27(9): 653-658.
[13] [13] FARRENKOPF R L.Analytic steady-state accuracy solutions for two common spacecraft attitude estimators [J]. Journal of Guidance and Control, 1978, 1(4): 282-284.
[14] [14] MARKLEY F L. Attitude error representations for Kalman filtering [J]. Journal of Guidance, Control, and Dynamics, 2003, 26(2): 311-317.
[15] [15] ZHANG R W. Satellite Orbit Attitude Dynamics and Control [M]. Beijing: Beihang University Press, 1998: 39-70.(in Chinese)
[16] [16] JULIER S J, UHLMANN J K. Reduced sigma point filters for the propagation of means and covariances through nonlinear transformations [C]. Proceedings of the American Control Conference, Defferson City, 2002: 887-892.
[18] [18] JULIER S, UHLMANN J K. A new approach for filtering nonlinear systems[C]. Proceedings of the American control conference. IEEE Press, 1995: 1628-1632.
[19] [19] JULIER S J, UHLMANN J K. Reduced sigma point filters for the propagation of means and covariances through nonlinear transformations [C]. Proceedings of the American Control Conference, Defferson City, 2002: 887-892.
[20] [20] JULIER S, UHLMANN J. Unscented filtering and nonlinear estimation[C]. Proceedings of IEEE. 2004, 92(3): 401-422.
[21] [21] BROWN O, EREMENKO P. Fractionated space architectures: a vision for responsive space[C]. 4th Responsive Space Conference, April 24-27, 2006, Los Angeles, CA: 1-13.
Get Citation
Copy Citation Text
WANG Xiao-chu, YOU Zheng, ZHAO Kai-chun. Determination of vision-based relative state by modified unscented Kalman filter[J]. Optics and Precision Engineering, 2013, 21(4): 1032
Category:
Received: Nov. 14, 2012
Accepted: --
Published Online: May. 24, 2013
The Author Email: Xiao-chu WANG (wangxiaochu1985@gmail.com)