Laser & Optoelectronics Progress, Volume. 60, Issue 17, 1719001(2023)

Influence Analysis of Thermo-Optic Effect on Generation and Evolution of Silicon-on-Insulator Microcavity Optical Comb

Keyu Xiong**, Jin Wen*, Chenyao He, Bozhi Liang, Wei Sun, Hui Zhang, Qian Wang, Zhengwei Wu, and Huimin Yu
Author Affiliations
  • School of Science, Xi'an Shiyou University, Xi'an 710065, Shaanxi , China
  • show less
    References(25)

    [1] Zhang X, Yin K, Zhang J H et al. High bandwidth 25 GHz dual optical frequency comb source[J]. Chinese Journal of Lasers, 48, 1116002(2021).

    [2] Schiller S. Spectrometry with frequency combs[J]. Optics Letters, 27, 766-768(2002).

    [3] Coddington I, Swann W C, Newbury N R. Coherent multiheterodyne spectroscopy using stabilized optical frequency combs[J]. Physical Review Letters, 100, 013902(2008).

    [4] Thorpe M J, Ye J. Cavity-enhanced direct frequency comb spectroscopy[J]. Applied Physics B, 91, 397-414(2008).

    [5] Han B, Ge J M, Ren X Y et al. Research on surface shape measurement technology of terahertz devices based on optical frequency comb[J]. Chinese Journal of Lasers, 49, 1704001(2022).

    [6] Coddington I, Swann W C, Nenadovic L et al. Rapid and precise absolute distance measurements at long range[J]. Nature Photonics, 3, 351-356(2009).

    [7] Lee J, Han S, Lee K et al. Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength[J]. Measurement Science and Technology, 24, 045201(2013).

    [8] Li C H, Benedick A J, Fendel P et al. A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1[J]. Nature, 452, 610-612(2008).

    [9] Steinmetz T, Wilken T, Araujo-Hauck C et al. Laser frequency combs for astronomical observations[J]. Science, 321, 1335-1337(2008).

    [10] Savchenkov A A, Matsko A B, Ilchenko V S et al. Tunable optical frequency comb with a crystalline whispering gallery mode resonator[J]. Physical Review Letters, 101, 093902(2008).

    [11] Liang W, Savchenkov A A, Matsko A B et al. Generation of near-infrared frequency combs from a MgF2 whispering gallery mode resonator[J]. Optics Letters, 36, 2290-2292(2011).

    [12] Okawachi Y, Saha K, Levy J S et al. Octave-spanning frequency comb generation in a silicon nitride chip[J]. Optics Letters, 36, 3398-3400(2011).

    [13] Johnson A R, Okawachi Y, Lamont M R E et al. Microresonator-based comb generation without an external laser source[J]. Optics Express, 22, 1394-1401(2014).

    [14] Jung H, Xiong C, Fong K Y et al. Optical frequency comb generation from aluminum nitride microring resonator[J]. Optics Letters, 38, 2810-2813(2013).

    [15] Jung H, Fong K Y, Xiong C et al. Electrical tuning and switching of an optical frequency comb generated in aluminum nitride microring resonators[J]. Optics Letters, 39, 84-87(2014).

    [16] Zhang X L, Zhao Y J. Research progress of microresonator-based optical frequency combs[J]. Acta Optica Sinica, 41, 0823014(2021).

    [17] Cocorullo G, Rendina I. Thermo-optical modulation at 1.5 μm in silicon etalon[J]. Electronics Letters, 28, 83-85(1992).

    [18] Carmon T, Yang L, Vahala K J. Dynamical thermal behavior and thermal self-stability of microcavities[J]. Optics Express, 12, 4742-4750(2004).

    [19] Wang J, Zhu B W, Hao Z Z et al. Thermo-optic effects in on-chip lithium niobate microdisk resonators[J]. Optics Express, 24, 21869-21879(2016).

    [20] He M F, Chen K X, Hu Z F. Kerr optical frequency comb based on micro-ring resonator with thermal effect[J]. Laser & Optoelectronics Progress, 55, 091901(2018).

    [21] Lee H, Chen T, Li J et al. Chemically etched ultra-high-Q resonators[C], CF2I.1(2013).

    [22] Chembo Y K, Yu N. Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators[J]. Physical Review A, 82, 033801(2010).

    [23] Coen S, Randle H G, Sylvestre T et al. Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model[J]. Optics Letters, 38, 37-39(2013).

    [24] Del'Haye P, Herr T, Gavartin E et al. Octave spanning tunable frequency comb from a microresonator[J]. Physical Review Letters, 107, 063901(2011).

    [25] Choi H S, Armani A M. Thermal nonlinear effects in hybrid optical microresonators[J]. Applied Physics Letters, 97, 223306(2010).

    Tools

    Get Citation

    Copy Citation Text

    Keyu Xiong, Jin Wen, Chenyao He, Bozhi Liang, Wei Sun, Hui Zhang, Qian Wang, Zhengwei Wu, Huimin Yu. Influence Analysis of Thermo-Optic Effect on Generation and Evolution of Silicon-on-Insulator Microcavity Optical Comb[J]. Laser & Optoelectronics Progress, 2023, 60(17): 1719001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Nonlinear Optics

    Received: Aug. 19, 2022

    Accepted: Oct. 9, 2022

    Published Online: Sep. 13, 2023

    The Author Email: Xiong Keyu (20212080933@stumail.xsyu.edu.cn), Wen Jin (wenjin@xsyu.edu.cn)

    DOI:10.3788/LOP222343

    Topics