Journal of Terahertz Science and Electronic Information Technology , Volume. 21, Issue 4, 437(2023)

Analysis and prospect of key technologies of automotive radar

ZHENG Le1,2, LONG Teng1, LONG Jiamin1, WEN Zheng1, HU Xueyao1,2, and GAO Zhen1,3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(109)

    [5] [5] MERLO A L. Automotive radar for the prevention of collisions[J]. IEEE Transactions on Industrial Electronics and Control Instrumentation, 1964(1):1-6.

    [6] [6] KIYOTO M, KONDOH T, BAN K, et al. Radar sensor for automobiles[C]// 1974 IEEE International Solid-State Circuits Conference. Philadelphia,PA,USA:IEEE, 1974(17):74-75.

    [7] [7] HAROKOPUS W P. Application of radar to automobile control and sensing[C]// 1971 IEEE GMTT International Microwave Symposium Digest. Washington,DC,USA:IEEE, 1971:168-169.

    [8] [8] WOLL J D. Monopulse Doppler radar for vehicle applications[C]// Proceedings of the Intelligent Vehicles' 95 Symposium. Detroit,MI,USA:IEEE, 1995:42-47.

    [9] [9] GRESHAM I,JAIN N,BUDKA T,et al. A compact manufacturable 76~77 GHz radar module for commercial ACC applications[J]. IEEE Transactions on Microwave Theory and Techniques, 2001,49(1):44-58.

    [10] [10] WALDSCHMIDT C, HASCH J, MENZEL W. Automotive radar—from first efforts to future systems[J]. IEEE Journal of Microwaves, 2021,1(1):135-148.

    [11] [11] ENGELS F,HEIDENREICH P,WINTERMANTEL M,et al. Automotive radar signal processing:research directions and practical challenges[J]. IEEE Journal of Selected Topics in Signal Processing, 2021,15(4):865-878.

    [12] [12] ENGELS F,HEIDENREICH P,ZOUBIR A M,et al. Advances in automotive radar:a framework on computationally efficient high-resolution frequency estimation[J]. IEEE Signal Processing Magazine, 2017,34(2):36-46.

    [13] [13] PATOLE S M, TORLAK M, WANG D, et al. Automotive radars: a review of signal processing techniques[J]. IEEE Signal Processing Magazine, 2017,34(2):22-35.

    [14] [14] BILIK I, LONGMAN O, VILLEVAL S, et al. The rise of radar for autonomous vehicles: signal processing solutions and future research directions[J]. IEEE Signal Processing Magazine, 2019,36(5):20-31.

    [15] [15] HAHOBYAN G,YANG B. High-performance automotive radar:a review of signal processing algorithms and modulation schemes [J]. IEEE Signal Processing Magazine, 2019,36(5):32-44.

    [16] [16] SAPONARA S, GRECO M S, GINI F. Radar-on-chip/in-package in autonomous driving vehicles and intelligent transport systems:opportunities and challenges[J]. IEEE Signal Processing Magazine, 2019,36(5):71-84.

    [17] [17] ROHLING H, MEINECKE M M. Waveform design principles for automotive radar systems[C]// 2001 CIE International Conference on Radar Proceedings. Beijing,China:IEEE, 2001:1-4.

    [18] [18] ROHLIING H,MOLLER C. Radar waveform for automotive radar systems and applications[C]// 2008 IEEE Radar Conference. Rome,Italy:IEEE, 2008:1-4.

    [19] [19] GUERMANDI D,SHI Q,DEWILDE A,et al. A 79 GHz 2×2 MIMO PMCW radar SoC in 28 nm CMOS[J]. IEEE Journal of Solid-State Circuits, 2017,52(10):2613-2626.

    [20] [20] OVERDEVEST J, JANSEN F, UYSAL F, et al. Doppler influence on waveform orthogonality in 79 GHz MIMO phase-coded automotive radar[J]. IEEE Transactions on Vehicular Technology, 2019,69(1):16-25.

    [21] [21] ALLAND S,STARK W,ALI M, et al. Interference in automotive radar systems:characteristics,mitigation techniques,and current and future research[J]. IEEE Signal Processing Magazine, 2019,36(5):45-59.

    [22] [22] LIU F, ZHENG L, CUI Y, et al. Seventy years of radar and communications: the road from separation to integration[J/OL]. arXiv2210.00446, 2022.

    [23] [23] LIU F, YUAN W, MASOUROS C, et al. Radar-assisted predictive beamforming for vehicular links: communication served by sensing[J]. IEEE Transactions on Wireless Communications, 2020,19(11):7704-7719.

    [24] [24] DU Z, LIU F, YUAN W, et al. Integrated sensing and communications for V2I networks: dynamic predictive beamforming for extended vehicle targets[J/OL]. arXiv:2111.10152v2, 2022. doi:10.1109/TWC. 2022.3219890.

    [25] [25] XIONG Y,LIU F,CUI Y,et al. On the fundamental tradeoff of integrated sensing and communications under Gaussian channels[J]. arXiv2204.06938, 2022.

    [26] [26] LIU F,LIU Y F,LI A,et al. Cramer-Rao Bound optimization for joint radar-communication beamforming[J]. IEEE Transactions on Signal Processing, 2022(70):240-253.

    [27] [27] LIU F,ZHOU L,MASOUROS C,et al. Toward dual-functional radar-communication systems:optimal waveform design[J]. IEEE Transactions on Signal Processing, 2018,66(16):4264-4279.

    [28] [28] DONG F,LIU F,CUI Y,et al. Sensing as a service in 6G perceptive networks:a unified framework for ISAC resource allocation[J/OL]. arXiv:2202.09969v3, 2022. doi:10.1109/TWC.2022.3219463.

    [29] [29] SHAPIR I,BILIK I,BARKAN G. Doppler ambiguity resolving in TDMA automotive MIMO radar via digital multiple PRF[C]// 2018 IEEE Radar Conference(RadarConf18). Oklahoma City,OK,USA:IEEE, 2018:0175-0180.

    [30] [30] KRONAUGE M, ROHLING H. New chirp sequence radar waveform[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014,50(4):2870-2877.

    [32] [32] VAN R W, ANITORI L. Simultaneous resolution of range-Doppler ambiguities using agile pulse intervals with sparse signal processing[C]// 2020 IEEE Radar Conference(RadarConf20). Florence,Italy:IEEE, 2020:1-6.

    [33] [33] LI K, HABTEMARIAM B, THARMARASA R, et al. Multitarget tracking with Doppler ambiguity[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013,49(4):2640-2656.

    [34] [34] LONGMAN O,BILIK I. Spectral Radon-Fourier transform for automotive radar applications[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021,57(2):1046-1056.

    [35] [35] XU L,LIEN J,LI J. Doppler-range processing for enhanced high-speed moving target detection using LFMCW automotive radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021,58(1):568-580.

    [36] [36] DIKSHTEIN M,LONGMAN O,VILLEVAL S,et al. Automotive radar maximum unambiguous velocity extension via high-order phase components[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021,58(1):743-751.

    [37] [37] BOURDOUX A,PARASHAR K,BAUDUIN M. Phenomenology of mutual interference of FMCW and PMCW automotive radars[C]// 2017 IEEE Radar Conference(RadarConf). Seattle,WA,USA:IEEE, 2017:1709-1714.

    [38] [38] YANG X, ZHANG K, WANG T, et al. Anti-interference waveform design for automotive radar[C]// 2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference(IAEAC). Chongqing,China:IEEE, 2017:14-17.

    [39] [39] KITSUKAWA Y,MITSUMOTO M,MIZUTANI H,et al. An interference suppression method by transmission chirp waveform with random repetition interval in fast-chirp FMCW radar[C]// 2019 16th European Radar Conference(EuRAD). Paris,France:IEEE, 2019:165-168.

    [40] [40] HU X,LI Y,LU M,et al. A multi-carrier-frequency random-transmission chirp sequence for TDM MIMO automotive radar[J]. IEEE Transactions on Vehicular Technology, 2019,68(4):3672-3685.

    [41] [41] MOON T,PARK J,KIM S. BlueFMCW:random frequency hopping radar for mitigation of interference and spoofing[J]. Journal on Advances in Signal Processing, 2022(1):1-17.

    [43] [43] RAMEEZ M, DAHL M, PETTERSSON M I. Adaptive digital beamforming for interference suppression in automotive FMCW radars[C]// 2018 IEEE Radar Conference. Oklahoma City,OK,USA:IEEE, 2018:0252-0256.

    [44] [44] BARJENBRUCH M,KELLNER D,DIETMAYER K,et al. A method for interference cancellation in automotive radar[C]// 2015 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility(ICMIM). Heidelberg,Germany:IEEE, 2015:1-4.

    [45] [45] UMEHIRA M,WATANABE Y,WANG X,et al. Inter-radar interference in automotive FMCW radars and its mitigation challenges[C]// 2020 IEEE International Symposium on Radio-Frequency Integration Technology(RFIT). Hiroshima, Japan: IEEE, 2020: 220-222.

    [47] [47] WU J,YANG S,LU W,et al. Iterative modified threshold method based on EMD for interference suppression in FMCW radars[J]. IET Radar,Sonar & Navigation, 2020,14(8):1219-1228.

    [48] [48] LEE S,LEE J Y,KIM S C. Mutual interference suppression using wavelet denoising in automotive FMCW radar systems[J]. IEEE Transactions on Intelligent Transportation Systems, 2019,22(2):887-897.

    [49] [49] WANG J, DING M, YAROVOY A. Interference mitigation for FMCW radar with sparse and low-rank Hankel matrix decomposition[J]. IEEE Transactions on Signal Processing, 2022(70):822-834.

    [50] [50] BLISS D W,FORSYTHE K W. Multiple-Input Multiple-Output(MIMO) radar and imaging:degrees of freedom and resolution[C]// The Thirty-Seventh Asilomar Conference on Signals,Systems & Computers. Pacific Grove,CA,USA:IEEE, 2003(1):54-59.

    [51] [51] INSTRUMENTS T. Imaging radar using cascaded mmWave sensor reference design[EB/OL]. [2023-01-05]. http://www.ti.com/ lit/ug/tiduen5a/tiduen5a.pdf.

    [52] [52] LEE S, KIM S C. Logarithmic-domain array interpolation for improved direction of arrival estimation in automotive radars[J]. Sensors, 2019,19(10):2410.

    [53] [53] BINGNAN P E I, PEI T, ZHANG H. Orthogonal waveform design of MIMO radar based on niche genetic algorithm[C]// 2020 IEEE International Conference on Signal Processing,Communications and Computing(ICSPCC). Macau,China:IEEE, 2020:1-6.

    [54] [54] LIANG C,WANG Y,YANG Z,et al. Cooperative automotive radars with multi-aperture multiplexing MIMO sparse array design[J]. Electronics, 2022,11(8):1198.

    [55] [55] JIN N,RAHMAT-SAMII Y. Advances in particle swarm optimization for antenna designs:real-number,binary,single-objective and multiobjective implementations[J]. IEEE Transactions on Antennas and Propagation, 2007,55(3):556-567.

    [56] [56] SUN H, BRIGUI F, LESTURGIE M. Analysis and comparison of MIMO radar waveforms[C]// 2014 International Radar Conference. Lille,France:IEEE, 2014:1-6.

    [57] [57] SCHMID C M, FEGER R, PFEFFER C, et al. Motion compensation and efficient array design for TDMA FMCW MIMO radar systems[C]// 2012 6th European Conference on Antennas and Propagation(EUCAP). Prague,Czech Republic:IEEE, 2012:1746-1750.

    [58] [58] BECHTER J, ROOS F, WALDSCHMIDT C. Compensation of motion-induced phase errors in TDM MIMO radars[J]. IEEE Microwave and Wireless Components Letters, 2017,27(12):1164-1166.

    [59] [59] BARAL A B, TORLAK M. Joint Doppler frequency and direction of arrival estimation for TDM MIMO automotive radars[J]. IEEE Journal of Selected Topics in Signal Processing, 2021,15(4):980-995.

    [60] [60] BELFIORI F,VAN R W,HOOGEBOOM P. Random transmission scheme approach for a FMCW TDMA coherent MIMO radar[C]// 2012 IEEE Radar Conference. Atlanta,GA,USA:IEEE, 2012:0178-0183.

    [61] [61] JJMD Wit, ROSSUM W, JONG A. Orthogonal waveforms for FMCW MIMO radar[C]// Proceedings of the 2011 IEEE Radar Conference. Kansas City,MO,USA:IEEE, 2011.

    [62] [62] CAO S,MADSEN N. Slow-time waveform design for MIMO GMTI radar using CAZAC sequences[C]// 2018 IEEE Radar Conference. Oklahoma City,OK,USA:IEEE, 2018:1456-1460.

    [63] [63] ZHENG L,ZHANG Y,ZHANG X. Two-step code generator for phase coded frequency modulated continuous wave Multi Input Multi Output radar:USA,US11366212B2[P]. 2021-8-12.

    [64] [64] BIALER O, JONAS A, TIRER T. Code optimization for fast chirp FMCW automotive MIMO radar[J]. IEEE Transactions on Vehicular Technology, 2021,70(8):7582-7593.

    [65] [65] ROSSUM W V,ANITORI L. Doppler ambiguity resolution using random slow-time code division multiple access MIMO radar with sparse signal processing[C]// 2018 IEEE Radar Conference. Oklahoma City,OK,USA:IEEE, 2018:0441-0446.

    [66] [66] SOLODKY G, LONGMAN O, ELJARAT I, et al. CLEAN receiver for CDMA MIMO radar[C]// 2021 29th European Signal Processing Conference. Dublin,Ireland:IEEE, 2021:1760-1764.

    [67] [67] RABIDEAU D J. Doppler-offset waveforms for MIMO radar[C]// 2011 IEEE Radar Conference. Kansas City, MO, USA: IEEE, 2011:965-970.

    [68] [68] RABIDEAU D J. MIMO radar waveforms and cancellation ratio[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012,48(2):1167-1178.

    [69] [69] JANSEN F G. Automotive radar Doppler division MIMO with velocity ambiguity resolving capabilities[C]// 2019 16th European Radar Conference. Paris,France:IEEE, 2019:245-248.

    [70] [70] KISHIGAMI T, IWASA K, YUI T, et al. Fast chirp MIMO radar system using Doppler offset orthogonal codes[C]// 2020 17th European Radar Conference. Utrecht,Netherlands:IEEE, 2021:390-393.

    [71] [71] XU F,VOROBYOV S A,YANG F. Transmit beamspace DDMA based automotive MIMO radar[J]. IEEE Transactions on Vehicular Technology, 2021,71(2):1669-1684.

    [72] [72] CAPON J. High-resolution frequency-wavenumber spectrum analysis[J]. Proceedings of the IEEE, 1969,57(8):1408-1418.

    [73] [73] HUANG Q,LU D,HU J,et al. Simultaneous location and parameter estimation of human vital sign with MIMO-FMCW radar[C]// 2019 IEEE International Conference on Signal,Information and Data Processing. Chongqing,China:IEEE, 2019:1-4.

    [74] [74] RAO B D,HARI K V S. Performance analysis of root-MUSIC[J]. IEEE Transactions on Acoustics,Speech,and Signal Processing, 1989,37(12):1939-1949.

    [75] [75] ROY R, PAULRAJ A, KAILATH T. ESPRIT-a subspace rotation approach to estimation of parameters of cisoids in noise[J]. IEEE Transactions on Acoustics,Speech,and Signal Processing, 1986,34(5):1340-1342.

    [76] [76] SUN S,PETROPULU A P,POOR H V. MIMO radar for advanced driver-assistance systems and autonomous driving:advantages and challenges[J]. IEEE Signal Processing Magazine, 2020,37(4):98-117.

    [77] [77] ROSSI M, HAIMOVICH A M, ELDAR Y C. Spatial compressive sensing for MIMO radar[J]. IEEE Transactions on Signal Processing, 2013,62(2):419-430.

    [78] [78] CAI T T, WANG L. Orthogonal matching pursuit for sparse signal recovery with noise[J]. IEEE Transactions on Information Theory, 2011,57(7):4680-4688.

    [79] [79] ZHANG Y,ZHENG L,LI Z Z,et al. Radar system with modified orthogonal linear antenna subarrays:European,EP3988961A1[P]. 2021-9-13.

    [80] [80] CHEN P, CAO Z, CHEN Z. A new atomic norm for DOA estimation with gain-phase errors[J]. IEEE Transactions on Signal Processing, 2020(68):4293-4306.

    [81] [81] LI M,STOLZ M,FENG Z,et al. An adaptive 3D grid-based clustering algorithm for automotive high resolution radar sensor[C]// 2018 IEEE International Conference on Vehicular Electronics and Safety. Madrid,Spain:IEEE, 2018:1-7.

    [82] [82] ESTER M,KRIEGEL H P,SANDER J,et al. A density-based algorithm for discovering clusters in large spatial databases with noise[C]// The 2nd International Conference on Knowledge Discovery and Data Mining. Portland, Oregon, USA: [s. n.], 1996: 226-231.

    [83] [83] KELLNER D, KLAPPSTEIN J, DIETMAYER K. Grid-based DBSCAN for clustering extended objects in radar data[C]// 2012 IEEE Intelligent Vehicles Symposium. Madrid,Spain:IEEE, 2012:365-370.

    [84] [84] SCHLICHENMAIER J,ROOS F,HüGLER P,et al. Clustering of closely adjacent extended objects in radar images using velocity profile analysis[C]// 2019 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility. Detroit,MI,USA:IEEE, 2019:1-4.

    [85] [85] SINGER R,SEA R. New results in optimizing surveillance system tracking and data correlation performance in dense multitarget environments[J]. IEEE Transactions on Automatic Control, 1973,18(6):571-582.

    [86] [86] SINGER R, SEA R, HOUSEWRIGHT K. Derivation and evaluation of improved tracking filter for use in dense multitarget environments[J]. IEEE Transactions on Information Theory, 1974,20(4):423-432.

    [88] [88] BAR-SHALOM Y. Extension of the probabilistic data association filter in multi-target tracking[J]. Proceedings of The 5th Symposium on Nonlinear Estimation, 1974,13(22):16-21.

    [89] [89] BLACKMAN S S. Multiple hypothesis tracking for multiple target tracking[J]. IEEE Aerospace and Electronic Systems Magazine, 2004,19(1):5-18.

    [90] [90] NUSS D,REUTER S,THOM M,et al. A random finite set approach for dynamic occupancy grid maps with real-time application[J]. The International Journal of Robotics Research, 2018,37(8):841-866.

    [91] [91] KALMAN R E. A new approach to linear filtering and prediction problems[J]. Journal of Basic Engineering, 1960,82(1):35-45.

    [92] [92] KALMAN R E. New results in linear filtering and prediction theory[J]. Journal of Basic Engineering, 1961,83(1):95-108.

    [93] [93] JULIER S J,UHLMANN J K,DURRANT-WHYTE H F. A new approach for filtering nonlinear systems[C]// Proceedings of 1995 American Control Conference-ACC'95. Seattle,WA,USA:IEEE, 1995(3):1628-1632.

    [94] [94] VAN D M R,WAN E A. The square-root unscented Kalman filter for state and parameter-estimation[C]// Proceedings of 2001 IEEE International Conference on Acoustics,Speech,and Signal Processing. Salt Lake City,UT,USA:IEEE, 2001(6):3461-3464.

    [95] [95] ARASARATNAM I,HAYKIN S. Cubature Kalman filters[J]. IEEE Transactions on Automatic Control, 2009,54(6):1254-1269.

    [96] [96] BLOM H A P,BAR-SHALOM Y. The interacting multiple model algorithm for systems with Markovian switching coefficients[J]. IEEE Transactions on Automatic Control, 1988,33(8):780-783.

    [97] [97] KOCH J W. Bayesian approach to extended object and cluster tracking using random matrices[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008,44(3):1042-1059.

    [98] [98] ZHANG L, LAN J. Extended object tracking using random matrix with skewness[J]. IEEE Transactions on Signal Processing, 2020(68):5107-5121.

    [99] [99] YANG S,BAUM M. Tracking the orientation and axes lengths of an elliptical extended object[J]. IEEE Transactions on Signal Processing, 2019,67(18):4720-4729.

    [101] [101] AYDOGDU C, KESKIN M F, CARVAJAL G K, et al. Radar interference mitigation for automated driving: exploring proactive strategies[J]. IEEE Signal Processing Magazine, 2020,37(4):72-84.

    [102] [102] AYDOGDU C, KESKIN M F, WYMEERSCH H. Automotive radar interference mitigation via multi-hop cooperative radar communications[C]// 2020 17th European Radar Conference. Utrecht,Netherlands:IEEE, 2021:270-273.

    [103] [103] ZHOU C, GU Y, SHI Z, et al. Off-grid direction-of-arrival estimation using coprime array interpolation[J]. IEEE Signal Processing Letters, 2018,25(11):1710-1714.

    [104] [104] LIANG L,BAI Z,HE W. DOA estimation by off-grid compressive sampling matching pursuit with impulsive noise[C]// 2021 China Automation Congress. Beijing,China:IEEE, 2021:2802-2805.

    [105] [105] BAO Q,KO C C,ZHI W. DOA estimation under unknown mutual coupling and multipath[J]. IEEE Transactions on Aerospace and Electronic Systems, 2005,41(2):565-573.

    [106] [106] ENGELS F,WINTERMANTEL M,HEIDENREICH P. Automotive MIMO radar angle estimation in the presence of multipath [C]// 2017 European Radar Conference. Nuremberg,Germany:IEEE, 2017:82-85.

    [107] [107] LI B,WANG S,ZHANG J,et al. Ultra-fast accurate AoA estimation via automotive massive-MIMO radar[J]. IEEE Transactions on Vehicular Technology, 2021,71(2):1172-1186.

    [108] [108] DONG X,WANG P,ZHANG P,et al. Probabilistic oriented object detection in automotive radar[C]// Proceedings of the IEEE/ CVF Conference on Computer Vision and Pattern Recognition Workshops. Seattle,WA,USA:IEEE, 2020:102-103.

    [109] [109] CHENG Y, SU J, CHEN H, et al. A new automotive radar 4D point clouds detector by using deep learning[C]// IEEE International Conference on Acoustics,Speech and Signal Processing. Toronto,ON,Canada:IEEE, 2021:8398-8402.

    [110] [110] TILLY J F,HAAG S,SCHUMANN O,et al. Detection and tracking on automotive radar data with deep learning[C]// 2020 IEEE 23rd International Conference on Information Fusion. Rustenburg,South Africa:IEEE, 2020:1-7.

    [111] [111] DUBEY A,SANTRA A,FUCHS J,et al. A Bayesian framework for integrated deep metric learning and tracking of vulnerable road users using automotive radars[J]. IEEE Access, 2021(9):68758-68777.

    [112] [112] COZMA A E,MORGAN L,STOLZ M,et al. DeepHybrid:deep learning on automotive radar spectra and reflections for object classification[C]// 2021 IEEE International Intelligent Transportation Systems Conference. Indianapolis,IN,USA:IEEE, 2021: 2682-2687.

    [113] [113] ONG S N,CHAN L,CHEW K,et al. 22 nm FD-SOI technology with back-biasing capability offers excellent performance for enabling efficient, ultra-low power analog and RF/millimeter-wave designs[C]// 2019 IEEE Radio Frequency Integrated Circuits Symposium. Boston,MA.USA:IEEE, 2019:323-326.

    [114] [114] DORIS K,JANSEN F,LONT M,et al. mmWave automotive radar:from evolution to revolution[C]// Proceedings of the 2021 IEEE International Electron Devices Meeting. Boston,MA,USA:IEEE, 2021:2571-2574.

    [115] [115] NEOFYTOU M,ATHANASIADIS P,GANZERLI M,et al. A novel 2-Dimensional correction method for mmWave cartesian I/Q modulators[C]// 2021 IEEE International Symposium on Circuits and Systems. San Francisco,CA,USA:IEEE, 2021:1-5.

    [116] [116] GAO Z,WAN Z,ZHENG D,et al. Integrated sensing and communication with mmWave massive MIMO:a compressed sampling perspective[J]. IEEE Transactions on Wireless Communications, 2022,22(3):1745-1762.

    [117] [117] WAN Z,GAO Z,SHIM B,et al. Compressive sensing based channel estimation for millimeter-wave full-dimensional MIMO with lens-array[J]. IEEE Transactions on Vehicular Technology, 2020,69(2):2337-2342.

    Tools

    Get Citation

    Copy Citation Text

    ZHENG Le, LONG Teng, LONG Jiamin, WEN Zheng, HU Xueyao, GAO Zhen. Analysis and prospect of key technologies of automotive radar[J]. Journal of Terahertz Science and Electronic Information Technology , 2023, 21(4): 437

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jan. 5, 2023

    Accepted: --

    Published Online: Jan. 17, 2024

    The Author Email:

    DOI:10.11805/tkyda2023005

    Topics