Journal of the Chinese Ceramic Society, Volume. 52, Issue 7, 2329(2024)

Effect of Heat-Treatment on Mechanical Properties of (Gd0.9Yb0.1)2Zr2O7/Yb2O3 Stabilized ZrO2 Coatings During Thermal Cycling

HE Yongxiang1...2, FAN Xizhi1,2, CHI Guangfang1,2, ZHANG Wei1,2, ZUO Jinlv3, LI Sha3, YANG Bo3, and MAO Weiguo12,* |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(52)

    [1] [1] MORELLI S, BURSICH S, TESTA V, et al. CMAS corrosion and thermal cycling fatigue resistance of alternative thermal barrier coating materials and architectures: A comparative evaluation[J]. Surf Coat Technol, 2022, 439: 128433.

    [2] [2] LI S, CHEN W, ZHAO L, et al. Calcia-magnesia-alumino-silicate- induced degradation of (Gd0.9Yb0.1)2Zr2O7 thermal barrier coatings prepared by plasma spray-physical vapor deposition (PS-PVD)[J]. Surf Coat Technol, 2023, 454: 129179.

    [3] [3] DOLEKER K M, OZGURLUK Y, AHLATCI H, et al. Evaluation of oxidation and thermal cyclic behavior of YSZ, Gd2Zr2O7 and YSZ/Gd2Zr2O7 TBCs[J]. Surf Coat Technol, 2019, 371: 262-275.

    [4] [4] MAHADE S, CURRY N, BJ?RKLUND S, et al. Failure analysis of Gd2Zr2O7/YSZ multi-layered thermal barrier coatings subjected to thermal cyclic fatigue[J]. J Alloys Compd, 2016, 689: 1011-1019.

    [5] [5] WU R T, KAWAGISHI K, HARADA H, et al. The retention of thermal barrier coating systems on single-crystal superalloys: Effects of substrate composition[J]. Acta Mater, 2008, 56(14): 3622-3629.

    [6] [6] WU Y, ZHENG L, HE W, et al. Effects of Yb3+ doping on phase structure, thermal conductivity and fracture toughness of (Nd1-xYbx)2Zr2O7[J]. Ceram Int, 2019, 45(3): 3133-3139.

    [7] [7] VA?EN R, BAKAN E, MACK D, et al. Performance of YSZ and Gd2Zr2O7/YSZ double layer thermal barrier coatings in burner rig tests[J]. J Eur Ceram Soc, 2020, 40(2): 480-490.

    [8] [8] GUO L, XIN H, ZHANG Z, et al. Preparation of (Gd0.9Sc0.1)2Zr2O7/YSZ thermal barrier coatings and their corrosion resistance to V2O5 molten salt[J]. Surf Coat Technol, 2020, 389: 125677.

    [9] [9] JANG B-K, KIM S, OH Y-S, et al. Effect of Gd2O3 on the thermal conductivity of ZrO2-4mol.% Y2O3 ceramics fabricated by spark plasma sintering[J]. Scr Mater, 2013, 69(2): 165-170.

    [10] [10] TABESHFAR M, SALEHI M, DINI G, et al. Hot corrosion of Gd2Zr2O7, Gd2Zr2O7/YbSZ, YSZ?+?Gd2Zr2O7/YbSZ, and YSZ thermal barrier coatings exposed to Na2SO4?+?V2O5[J]. Surf Coat Technol, 2021, 409: 126718.

    [11] [11] FROMMHERZ M, SCHOLZ A, OECHSNER M, et al. Gadolinium zirconate/YSZ thermal barrier coatings: Mixed-mode interfacial fracture toughness and sintering behavior[J]. Surf Coat Technol, 2016, 286: 119-128.

    [12] [12] HUANG Z, QI J, ZHOU M, et al. A facile solvothermal method for high-quality Gd2Zr2O7 nanopowder preparation[J]. Ceram Int, 2018, 44(2): 1334-1342.

    [13] [13] OZGURLUK Y, KARAOGLANLI A C, AHLATCI H. Comparison of calcium-magnesium-alumina-silicate (CMAS) resistance behavior of produced with electron beam physical vapor deposition (EB-PVD) method YSZ and Gd2Zr2O7/YSZ thermal barrier coatings systems[J]. Vacuum, 2021, 194: 110576.

    [14] [14] ZHAO F A, XIAO H Y, BAI X M, et al. Effects of doping Yb3+, La3+, Ti4+, Hf4+, Ce4+ cations on the mechanical properties, thermal conductivity, and electronic structures of Gd2Zr2O7[J]. J Alloys Compd, 2019, 776: 306-318.

    [15] [15] BAHAMIRIAN M, HADAVI S M M, FARVIZI M, et al. Enhancement of hot corrosion resistance of thermal barrier coatings by using nanostructured Gd2Zr2O7 coating[J]. Surf Coat Technol, 2019, 360: 1-12.

    [16] [16] DOLEKER K M, KARAOGLANLI A C. Comparison of oxidation behavior of YSZ and Gd2Zr2O7 thermal barrier coatings (TBCs)[J]. Surf Coat Technol, 2017, 318: 198-207.

    [17] [17] MAHADE S, CURRY N, BJ?RKLUND S, et al. Functional performance of Gd2Zr2O7/YSZ multi-layered thermal barrier coatings deposited by suspension plasma spray[J]. Surf Coat Technol, 2017, 318: 208-216.

    [18] [18] LASHMI P G, MAJITHIA S, SHWETHA V, et al. Improved hot corrosion resistance of plasma sprayed YSZ/Gd2Zr2O7 thermal barrier coating over single layer YSZ[J]. Mater Charact, 2019, 147: 199-206.

    [19] [19] JACKSON R W, ZALESKI E M, HAZEL B T, et al. Response of molten silicate infiltrated Gd2Zr2O7 thermal barrier coatings to temperature gradients[J]. Acta Mater, 2017, 132: 538-549.

    [20] [20] DOLEKER K M, KARAOGLANLI A C, OZGURLUK Y, et al. Performance of single YSZ, Gd2Zr2O7 and double-layered YSZ/Gd2Zr2O7 thermal barrier coatings in isothermal oxidation test conditions[J]. Vacuum, 2020, 177: 109401.

    [21] [21] OZGURLUK Y, DOLEKER K M, KARAOGLANLI A C. Hot corrosion behavior of YSZ, Gd2Zr2O7 and YSZ/Gd2Zr2O7 thermal barrier coatings exposed to molten sulfate and vanadate salt[J]. Appl Surf Sci, 2018, 438: 96-113.

    [22] [22] KARAOGLANLI A C, DOLEKER K M, OZGURLUK Y. Interface failure behavior of yttria stabilized zirconia (YSZ), La2Zr2O7, Gd2Zr2O7, YSZ/La2Zr2O7 and YSZ/Gd2Zr2O7 thermal barrier coatings (TBCs) in thermal cyclic exposure[J]. Mater Charact, 2020, 159: 110072.

    [23] [23] LI M, GUO L, YE F. Phase structure and thermal conductivities of Er2O3 stabilized ZrO2 toughened Gd2Zr2O7 ceramics for thermal barrier coatings[J]. Ceram Int, 2016, 42(15): 16584-16588.

    [24] [24] LI B, SUN J, GUO L. CMAS corrosion behavior of Sc doped Gd2Zr2O7/YSZ thermal barrier coatings and their corrosion resistance mechanisms[J]. Corros Sci, 2021, 193: 109899.

    [25] [25] WANG C, GUO L, ZHANG Y, et al. Enhanced thermal expansion and fracture toughness of Sc2O3-doped Gd2Zr2O7 ceramics[J]. Ceram Int, 2015, 41(9): 10730-10735.

    [26] [26] SHEN Z, LIU G, LIU Z, et al. Dy doped Gd2Zr2O7 thermal barrier coatings: Thermal expansion coefficient, microstructure and failure mechanism[J]. Appl Surf Sci Adv, 2021, 6: 100174.

    [27] [27] ZHAO F A, XIAO H Y, LIU Z J, et al. A DFT study of mechanical properties, thermal conductivity and electronic structures of Th-doped Gd2Zr2O7[J]. Acta Mater, 2016, 121: 299-309.

    [28] [28] JIANG T, XIE M, GUAN L, et al. Effect of Nb5+ and Cu2+ codoping on thermal properties of Gd2Zr2O7 ceramic[J]. J Rare Earths, 2021, 39(2): 180-185.

    [29] [29] GUO Y, HE W, GUO H. Thermo-physical and mechanical properties of Yb2O3 and Sc2O3 co-doped Gd2Zr2O7 ceramics[J]. Ceram Int, 2020, 46(11): 18888-18894.

    [30] [30] GUO L, GUO H, PENG H, et al. Thermophysical properties of Yb2O3 doped Gd2Zr2O7 and thermal cycling durability of (Gd0.9Yb0.1)2Zr2O7/YSZ thermal barrier coatings[J]. J Eur Ceram Soc, 2014, 34(5): 1255-1263.

    [31] [31] ZHEN Z, WANG X, SHEN Z, et al. Phase stability, thermo-physical property and thermal cycling durability of Yb2O3 doped Gd2Zr2O7 novel thermal barrier coatings[J]. Ceram Int, 2022, 48(2): 2585-2594.

    [32] [32] ZHAO M, REN X, PAN W. Mechanical and thermal properties of simultaneously substituted pyrochlore compounds (Ca2Nb2O7)x (Gd2Zr2O7)1?x[J]. J Eur Ceram Soc, 2015, 35(3): 1055-1061.

    [33] [33] ZHANG Y, GUO L, ZHAO X, et al. Toughening effect of Yb2O3 stabilized ZrO2 doped in Gd2Zr2O7 ceramic for thermal barrier coatings[J]. Mater Sci Eng, A, 2015, 648: 385-391.

    [34] [34] FAN X, LUO Z, MAO W, et al. Effect of heat treatment on hardness and fracture toughness of Si/BSAS/Yb2SiO5 EBCs system under 1 200 ℃[J]. Ceram Int, 2023, 49(14): 22654-22666.

    [35] [35] LU S, ROUDET F, MONTAGNE A, et al. Vickers hardness of NiW coating as a potential replacement for Cr-VI: A methodology to consider size effect and tip defect in classical microindentation[J]. Surf Coat Technol, 2022, 447: 128812.

    [36] [36] MAO W G, WAN J, DAI C Y, et al. Evaluation of microhardness, fracture toughness and residual stress in a thermal barrier coating system: A modified Vickers indentation technique[J]. Surf Coat Technol, 2012, 206(21): 4455-4461.

    [37] [37] YIN H, WANG S, ZHAO Q, et al. Surface fracture behavior and subsurface damage of polycrystalline yttrium aluminum garnet ceramics in Vickers indentation[J]. J Mater Res Technol, 2023, 26: 5975-5989.

    [38] [38] MAO W, ZHANG H, ZHANG Z, et al. Evaluation of fracture toughness and residual stress for both single GYbZ and double layered GYbZ/8YSZ coatings by modified indentation tests[J]. Surf Coat Technol, 2020, 392: 125723.

    [39] [39] CHEN W, HE W, HE J, et al. Failure mechanisms of (Gd0.9Yb0.1)2Zr2O7/Yb2SiO5/Si thermal/environmental barrier coatings during thermal exposure at 1 300 ℃/1 400 ℃[J]. J Eur Ceram Soc, 2022, 42(7): 3297-3304.

    [40] [40] SHEN Z, LIU G, MU R, et al. Effects of Er stabilization on thermal property and failure behavior of Gd2Zr2O7 thermal barrier coatings[J]. Corros Sci, 2021, 185: 109418.

    [41] [41] SCHUMANN E, SARIOGLU C, BLACHERE J R, et al. High-temperature stress measurements during the oxidation of NiAl[J]. Oxid Met, 2000, 53(3): 259-272.

    [42] [42] CAO X Q, VASSEN R, STOEVER D. Ceramic materials for thermal barrier coatings[J]. J Eur Ceram Soc, 2004, 24(1): 1-10.

    [43] [43] BAI Y, FAN W, LIU K, et al. Gradient La2Ce2O7/YSZ thermal barrier coatings tailored by synchronous dual powder feeding system[J]. Mater Lett, 2018, 219: 55-58.

    [44] [44] JESURAJ S A, KUPPUSAMI P, RAO C J, et al. Phase stability and thermal behavior of single layered PSZ and bi-layered PSZ/Gd2Zr2O7 on bond coated Inconel-718 substrate[J]. Surf Coat Technol, 2019, 374: 500-512.

    [45] [45] QU Z, KAI W, DONG T, et al. Mechanical behavior of anti-oxidation coatings on C/C composites at elevated temperature: An in-situ indentation study[J]. Ceram Int, 2020, 46(5): 6628-6633.

    [46] [46] JESURAJ S A, KUPPUSAMI P, DHARINI T, et al. Effect of substrate temperature on microstructure and nanomechanical properties of Gd2Zr2O7 coatings prepared by EB-PVD technique[J]. Ceram Int, 2018, 44(15): 18164-18172.

    [47] [47] JESURAJ S A, KUPPUSAMI P, JAGADEESWARA R C. Evaluation of microstructure and coating integrity of EB-PVD deposited bi-layers of 7YSZ/Gd2Zr2O7 and 7YSZ/Y2O3-Gd2Zr2O7 top coats on bond coated superalloys[J]. Surf Coat Technol, 2022, 440: 128488.

    [48] [48] PATHAK S, KALIDINDI S R, MOSER B, et al. Analyzing indentation behavior of LaGaO3 single crystals using sharp indenters[J]. J Eur Ceram Soc, 2008, 28(10): 2039-2047.

    [49] [49] SHU X, FAN L, LU X, et al. Structure and performance evolution of the system (Gd1?xNdx)2(Zr1?yCey)2O7 (0≤x, y≤1.0)[J]. J Eur Ceram Soc, 2015, 35(11): 3095-3102.

    [50] [50] GUO L, ZHANG Y, ZHAO X, et al. Thermal expansion and fracture toughness of (RE0.9Sc0.1)2Zr2O7 (RE=La, Sm, Dy, Er) ceramics[J]. Ceram Int, 2016, 42(1): 583-588.

    [51] [51] MAO W, WANG Y, HUANG H, et al. In situ characterizations of mechanical behaviors of freestanding (Gd0.9Yb0.1)2Zr2O7 coatings by bending tests under different temperatures based on digital image correlation[J]. J Eur Ceram Soc, 2020, 40(2): 491-502.

    [52] [52] ZHOU P, WANG Z, FAN Y, et al. Thermal Shock Resistance of laminated ZrB2-SiC ceramic evaluated by indentation technique[J]. J Am Ceram Soc, 2015, 98(9): 2866-2872.

    Tools

    Get Citation

    Copy Citation Text

    HE Yongxiang, FAN Xizhi, CHI Guangfang, ZHANG Wei, ZUO Jinlv, LI Sha, YANG Bo, MAO Weiguo. Effect of Heat-Treatment on Mechanical Properties of (Gd0.9Yb0.1)2Zr2O7/Yb2O3 Stabilized ZrO2 Coatings During Thermal Cycling[J]. Journal of the Chinese Ceramic Society, 2024, 52(7): 2329

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jan. 16, 2024

    Accepted: --

    Published Online: Aug. 26, 2024

    The Author Email: Weiguo MAO (ssamao@126.com)

    DOI:10.14062/j.issn.0454-5648.20240040

    Topics