Infrared and Laser Engineering, Volume. 54, Issue 2, 20240490(2025)
Artificial-intelligent quantitative phase imaging: from physics to algorithm and back to physics (inner cover paper·invited)
[10] SHACK R V. Production and use of a lenticular hartmann screen[J]. Spring Meeting of Optical Society of America, 1971, 656(1971).
[15] [15] DONG C, LOY C C, HE K, et al. Learning a deep convolutional wk f image superresolution [C]Proc of Computer Vision – ECCV 2014, 2014, 8692: 184199.
[16] [16] LES R Q, SU H, KAICHUN M, et al. Point: Deep learning on point sets f 3D classification segmentation [C]Proc of 2017 IEEE Conference on Computer Vision Pattern Recognition (CVPR), 2017: 7785.
[22] [22] ZHOU WJ, LIU S, ZHANG H, et al. A deep learning approach f digital hologram speckle noise reduction [C]Proc of Imaging Applied Optics Congress, 2020.
[23] [23] GAO Y, CAO L. Pixel superresolution quantitative phase imaging based on modulation diversity [C]Proc of SPIECOS Photonics Asia, 2022, 12318: 123180Q.
[32] [32] BA Y, ZHAO G, KADAMBI A. Blending diverse physical pris with neural wks [DBOL]. (2019101) [20241021]. https:arxiv.gabs1910.00201.
[36] NOMARSKI G M. Differential microinterferometer with polarized waves[J]. J Phys Radium Paris, 16, 9S(1955).
[40] GERCHBERG R W S, W O. A practical algorithm for the determination of the phase from image and diffraction plane pictures[J]. Optik, 35, 237-246(1972).
[44] [44] ZHANG W, CAO L, BRADY D, et al. Twinimagefree holography: A compressive sensing approach [J]. Phys Rev Lett , 2018, 121(9):093902.
[48] RIVENSON Y, ZHANG Y, GÜNAYDıN H et al. Phase recovery and holographic image reconstruction using deep learning in neural networks[J]. Light Sci Appl, 7, 17141(2018).
[50] REN Z, XU Z, LAM E Y. End-to-end deep learning framework for digital holographic reconstruction[J]. Advanced Photonics, 1, 016004(2019).
[51] ZHOU J, JIN Y, LU L et al. Deep learning-enabled pixel-super-resolved quantitative phase microscopy from single-shot aliased intensity measurement[J]. Laser & Photonics Reviews, 18, 2300488(2024).
[57] [57] UELWER T, HOFFMANN T, HARMELING S. Noniterative phase retrieval with caded neural wks [C]Proc of Artificial Neural wks Machine Learning – ICANN 2021: 295306.
[60] [60] LUO W, ZHANG Y, SHU X, et al. Learning endtoend phase retrieval using only one interferogram with mixedcontext wk [C]SPIE, 2022, 11970: 11970E.
[64] [64] SHU X, NIU M, ZHANG Y, et al. NasPR: Neural architecture search generated phase retrieval f offaxis quantitative phase imaging [DBOL]. (20221025) [20241021]. https:arxiv.gabs2210.14231.
[65] [65] Nakahata R, Zaman S, Zhang M, et al. Ptychofmer: A transfmerbased model f ptychographic phase retrieval [DBOL]. (20241022) [20241021]. https:arxiv.gabs2410.17377.
[68] [68] ZHU J Y, PARK T, ISOLA P, et al. Unpaired imagetoimage translation using cycleconsistent adversarial wks [C]Proc of 2017 IEEE International Conference on Computer Vision (ICCV), 2017: 22422251.
[70] [70] ZHANG Y, LUO W, SHU X, et al. Learning phase retrieval without using real data [C]Proc of TENCON 20222022 IEEE Region 10 Conference (TENCON), 2022: 13.
[71] [71] WANG W, HUANG Q, YOU S, et al. Shape inpainting using 3d generative adversarial wk recurrent convolutional wks [C]Proc of 2017 IEEE International Conference on Computer Vision (ICCV), 2017: 23172325.
[74] BYEON H, GO T, LEE S J. Deep learning-based digital in-line holographic microscopy for high resolution with extended field of view[J]. Optics & Laser Technology, 113, 77-86(2019).
[76] [76] ZHOU W J, ZOU S, HE D K, et al. Speckle noise reduction in digital holograms based on spectral convolutional neural wks (scnn) [C]SPIE, 2019, 111188: 1118807.
[78] [78] PITKÄAHO T, MANNINEN A, NAUGHTON T J. Perfmance of autofocus capability of deep convolutional neural wks in digital holographic microscopy [C]Proc of Digital Holography ThreeDimensional Imaging, 2017.
[80] [80] Zhang Q, Lu S, Li J, et al. Deep phase shifter f quantitative phase imaging [DBOL]. (202036) [20241021]. https:arxiv.gabs2003.03027.
[83] [83] METZLER C, SCHNITER P, VEERARAGHAVAN A, et al. Prdeep: Robust phase retrieval with a flexible deep wk [C]Proc of Proceedings of the 35th International Conference on Machine Learning, 2018, 80: 35013510.
[84] [84] GOLDSTEIN T, STUDER C, BARANIUK R. A field guide to fwardbackward splitting with a fasta implementation [DBOL]. (20161228) [20241021]. https:arxiv.gabs1411.3406.
[86] [86] WANG Y, SUN X, FLEISCHER J. When deep denoising meets iterative phase retrieval [C]Proc of Proceedings of the 37th International Conference on Machine Learning, 2020, 119: 1000710017.
[88] [88] LEMPITSKY V, VEDALDI A, ULYANOV D. Deep image pri [C]Proc of 2018 IEEECVF Conference on Computer Vision Pattern Recognition, 2018: 94469454.
[89] [89] JAGATAP G, HEGDE C. Phase retrieval using untrained neural wk pris. Wkshop on solving inverse problems with deep wks. [C]Proc of the 33rd Conference on Neural Infmation Processing Systems (Open Review, 2019), 2019.
[90] [90] JAGATAP G, HEGDE C. Algithmic guarantees f inverse imaging with untrained wk pris [C]Proc of the 33rd International Conference on Neural Infmation Processing Systems, 2019.
[96] [96] BOOMINATHAN L, MANIPARAMBIL M, GUPTA H, et al. Phase retrieval f fourier ptychography under varying amount of measurements [C]Proc of British Machine Vision Conference, 2018.
[112] [112] LIM J, PSALTIS D. Maxwell: Physicsdriven deep neural wk training based on maxwell’s equations [J]. APL Photonics , 2022, 7(1): 011301.
[113] AMIRHOSSEIN S, CARLO G, AHMED Bassam A et al. Physics-informed neural networks for diffraction tomography[J]. Advanced Photonics, 4, 066001(2022).
[119] FRATZ M, SEYLER T, BERTZ A et al. Digital holography in production: An overview[J]. Light: Advanced Manufacturing, 2, 283-295(2020).
[120] ALTMAN L E, GRIER D G. Catch: Characterizing and tracking colloids holographically using deep neural networks[J]. The Journal of Physical Chemistry B, 1602-1610(2020).
[125] DONG C, LOY C C, HE K et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38, 295-307(2014).
[129] [129] JIAO Y, HE Y R, KEL M E, et al. Computational interference microscopy enabled by deep learning [J]. APL Photonics , 2021, 6(4): 046103.
[132] LUO Z, YURT A, STAHL R et al. Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks[J]. Opt Express, 27, 13581-13595(2019).
[133] WANG K, QIAN K, DI J et al. Deep learning spatial phase unwrapping: A comparative review[J]. Adv Photon Nexus, 1, 014001(2022).
[134] [134] DARDIKMAN G, SHAKED N T. Phase unwrapping using residual neural wks [C]Proc of Imaging Applied Optics 2018 (3D, AO, AIO, COSI, DH, IS, LACSEA, LS&C, MATH, pcAOP), 2018.
[143] [143] MICCIO L, ALFIERI D, GRILLI S, et al. Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram [J]. Appl Phys Lett , 2007, 90(4): 041104.
Get Citation
Copy Citation Text
Xuan TIAN, Shuquan FEI, Runze LI, Tong PENG, Junwei MIN, Siying WANG, Yuge XUE, Chen BAI, Baoli YAO. Artificial-intelligent quantitative phase imaging: from physics to algorithm and back to physics (inner cover paper·invited)[J]. Infrared and Laser Engineering, 2025, 54(2): 20240490
Category: Optical imaging, display and information processing
Received: Nov. 26, 2024
Accepted: --
Published Online: Mar. 14, 2025
The Author Email: