Infrared and Laser Engineering, Volume. 54, Issue 2, 20240490(2025)

Artificial-intelligent quantitative phase imaging: from physics to algorithm and back to physics (inner cover paper·invited)

Xuan TIAN1,2, Shuquan FEI1,2, Runze LI1, Tong PENG1, Junwei MIN1,2, Siying WANG1,2, Yuge XUE1,2, Chen BAI1,2, and Baoli YAO1,2
Author Affiliations
  • 1State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    References(152)

    [10] SHACK R V. Production and use of a lenticular hartmann screen[J]. Spring Meeting of Optical Society of America, 1971, 656(1971).

    [15] [15] DONG C, LOY C C, HE K, et al. Learning a deep convolutional wk f image superresolution [C]Proc of Computer Vision – ECCV 2014, 2014, 8692: 184199.

    [16] [16] LES R Q, SU H, KAICHUN M, et al. Point: Deep learning on point sets f 3D classification segmentation [C]Proc of 2017 IEEE Conference on Computer Vision Pattern Recognition (CVPR), 2017: 7785.

    [22] [22] ZHOU WJ, LIU S, ZHANG H, et al. A deep learning approach f digital hologram speckle noise reduction [C]Proc of Imaging Applied Optics Congress, 2020.

    [23] [23] GAO Y, CAO L. Pixel superresolution quantitative phase imaging based on modulation diversity [C]Proc of SPIECOS Photonics Asia, 2022, 12318: 123180Q.

    [32] [32] BA Y, ZHAO G, KADAMBI A. Blending diverse physical pris with neural wks [DBOL]. (2019101) [20241021]. https:arxiv.gabs1910.00201.

    [36] NOMARSKI G M. Differential microinterferometer with polarized waves[J]. J Phys Radium Paris, 16, 9S(1955).

    [40] GERCHBERG R W S, W O. A practical algorithm for the determination of the phase from image and diffraction plane pictures[J]. Optik, 35, 237-246(1972).

    [44] [44] ZHANG W, CAO L, BRADY D, et al. Twinimagefree holography: A compressive sensing approach [J]. Phys Rev Lett , 2018, 121(9):093902.

    [48] RIVENSON Y, ZHANG Y, GÜNAYDıN H et al. Phase recovery and holographic image reconstruction using deep learning in neural networks[J]. Light Sci Appl, 7, 17141(2018).

    [50] REN Z, XU Z, LAM E Y. End-to-end deep learning framework for digital holographic reconstruction[J]. Advanced Photonics, 1, 016004(2019).

    [51] ZHOU J, JIN Y, LU L et al. Deep learning-enabled pixel-super-resolved quantitative phase microscopy from single-shot aliased intensity measurement[J]. Laser & Photonics Reviews, 18, 2300488(2024).

    [57] [57] UELWER T, HOFFMANN T, HARMELING S. Noniterative phase retrieval with caded neural wks [C]Proc of Artificial Neural wks Machine Learning – ICANN 2021: 295306.

    [60] [60] LUO W, ZHANG Y, SHU X, et al. Learning endtoend phase retrieval using only one interferogram with mixedcontext wk [C]SPIE, 2022, 11970: 11970E.

    [64] [64] SHU X, NIU M, ZHANG Y, et al. NasPR: Neural architecture search generated phase retrieval f offaxis quantitative phase imaging [DBOL]. (20221025) [20241021]. https:arxiv.gabs2210.14231.

    [65] [65] Nakahata R, Zaman S, Zhang M, et al. Ptychofmer: A transfmerbased model f ptychographic phase retrieval [DBOL]. (20241022) [20241021]. https:arxiv.gabs2410.17377.

    [68] [68] ZHU J Y, PARK T, ISOLA P, et al. Unpaired imagetoimage translation using cycleconsistent adversarial wks [C]Proc of 2017 IEEE International Conference on Computer Vision (ICCV), 2017: 22422251.

    [70] [70] ZHANG Y, LUO W, SHU X, et al. Learning phase retrieval without using real data [C]Proc of TENCON 20222022 IEEE Region 10 Conference (TENCON), 2022: 13.

    [71] [71] WANG W, HUANG Q, YOU S, et al. Shape inpainting using 3d generative adversarial wk recurrent convolutional wks [C]Proc of 2017 IEEE International Conference on Computer Vision (ICCV), 2017: 23172325.

    [74] BYEON H, GO T, LEE S J. Deep learning-based digital in-line holographic microscopy for high resolution with extended field of view[J]. Optics & Laser Technology, 113, 77-86(2019).

    [76] [76] ZHOU W J, ZOU S, HE D K, et al. Speckle noise reduction in digital holograms based on spectral convolutional neural wks (scnn) [C]SPIE, 2019, 111188: 1118807.

    [78] [78] PITKÄAHO T, MANNINEN A, NAUGHTON T J. Perfmance of autofocus capability of deep convolutional neural wks in digital holographic microscopy [C]Proc of Digital Holography ThreeDimensional Imaging, 2017.

    [80] [80] Zhang Q, Lu S, Li J, et al. Deep phase shifter f quantitative phase imaging [DBOL]. (202036) [20241021]. https:arxiv.gabs2003.03027.

    [83] [83] METZLER C, SCHNITER P, VEERARAGHAVAN A, et al. Prdeep: Robust phase retrieval with a flexible deep wk [C]Proc of Proceedings of the 35th International Conference on Machine Learning, 2018, 80: 35013510.

    [84] [84] GOLDSTEIN T, STUDER C, BARANIUK R. A field guide to fwardbackward splitting with a fasta implementation [DBOL]. (20161228) [20241021]. https:arxiv.gabs1411.3406.

    [86] [86] WANG Y, SUN X, FLEISCHER J. When deep denoising meets iterative phase retrieval [C]Proc of Proceedings of the 37th International Conference on Machine Learning, 2020, 119: 1000710017.

    [88] [88] LEMPITSKY V, VEDALDI A, ULYANOV D. Deep image pri [C]Proc of 2018 IEEECVF Conference on Computer Vision Pattern Recognition, 2018: 94469454.

    [89] [89] JAGATAP G, HEGDE C. Phase retrieval using untrained neural wk pris. Wkshop on solving inverse problems with deep wks. [C]Proc of the 33rd Conference on Neural Infmation Processing Systems (Open Review, 2019), 2019.

    [90] [90] JAGATAP G, HEGDE C. Algithmic guarantees f inverse imaging with untrained wk pris [C]Proc of the 33rd International Conference on Neural Infmation Processing Systems, 2019.

    [96] [96] BOOMINATHAN L, MANIPARAMBIL M, GUPTA H, et al. Phase retrieval f fourier ptychography under varying amount of measurements [C]Proc of British Machine Vision Conference, 2018.

    [112] [112] LIM J, PSALTIS D. Maxwell: Physicsdriven deep neural wk training based on maxwell’s equations [J]. APL Photonics , 2022, 7(1): 011301.

    [113] AMIRHOSSEIN S, CARLO G, AHMED Bassam A et al. Physics-informed neural networks for diffraction tomography[J]. Advanced Photonics, 4, 066001(2022).

    [119] FRATZ M, SEYLER T, BERTZ A et al. Digital holography in production: An overview[J]. Light: Advanced Manufacturing, 2, 283-295(2020).

    [120] ALTMAN L E, GRIER D G. Catch: Characterizing and tracking colloids holographically using deep neural networks[J]. The Journal of Physical Chemistry B, 1602-1610(2020).

    [125] DONG C, LOY C C, HE K et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38, 295-307(2014).

    [129] [129] JIAO Y, HE Y R, KEL M E, et al. Computational interference microscopy enabled by deep learning [J]. APL Photonics , 2021, 6(4): 046103.

    [132] LUO Z, YURT A, STAHL R et al. Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks[J]. Opt Express, 27, 13581-13595(2019).

    [133] WANG K, QIAN K, DI J et al. Deep learning spatial phase unwrapping: A comparative review[J]. Adv Photon Nexus, 1, 014001(2022).

    [134] [134] DARDIKMAN G, SHAKED N T. Phase unwrapping using residual neural wks [C]Proc of Imaging Applied Optics 2018 (3D, AO, AIO, COSI, DH, IS, LACSEA, LS&C, MATH, pcAOP), 2018.

    [143] [143] MICCIO L, ALFIERI D, GRILLI S, et al. Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram [J]. Appl Phys Lett , 2007, 90(4): 041104.

    Tools

    Get Citation

    Copy Citation Text

    Xuan TIAN, Shuquan FEI, Runze LI, Tong PENG, Junwei MIN, Siying WANG, Yuge XUE, Chen BAI, Baoli YAO. Artificial-intelligent quantitative phase imaging: from physics to algorithm and back to physics (inner cover paper·invited)[J]. Infrared and Laser Engineering, 2025, 54(2): 20240490

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical imaging, display and information processing

    Received: Nov. 26, 2024

    Accepted: --

    Published Online: Mar. 14, 2025

    The Author Email:

    DOI:10.3788/IRLA20240490

    Topics