Infrared and Laser Engineering, Volume. 50, Issue 11, 20210546(2021)

Research progresses of microcavity lasers based on lithium niobate on insulator (Invited)

Qiang Luo... Fang Bo, Yongfa Kong, Guoquan Zhang and Jingjun Xu |Show fewer author(s)
Author Affiliations
  • MOE, Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin 300457, China
  • show less
    References(44)

    [1] [1] Courjal N, Bernal Mp, Caspar A, et al. Lithium niobate optical waveguides microwaveguides [OLM].[20180815]http:www.intechopen.comchapters61408.

    [2] H Jin, F M Liu, P Xu, et al. On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits. Physical Review Letters, 113, 103601(2014).

    [3] G Poberaj, H Hu, W Sohler, et al. Lithium niobate on insulator (LNOI) for micro-photonic devices. Laser & Photonics Reviews, 6, 488-503(2012).

    [4] J Lin, F Bo, Y Cheng, et al. Advances in on-chip photonic devices based on lithium niobate on insulator. Photonics Research, 8, 1910-1936(2020).

    [5] Y Kong, F Bo, W Wang, et al. Recent progress in lithium niobate: Optical damage, defect simulation, and on-chip devices. Advanced Materials, 32, 1806452(2020).

    [6] M Li, J Ling, Y He, et al. Lithium niobate photonic-crystal electro-optic modulator. Nature Communications, 11, 4123(2020).

    [7] M He, M Xu, Y Ren, et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbits−1 and beyond. Nature Photonics, 13, 359-364(2019).

    [8] C Wang, M Zhang, X Chen, et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 562, 101-104(2018).

    [9] J Lu, Sayem A Al, Z Gong, et al. Ultralow-threshold thin-film lithium niobate optical parametric oscillator. Optica, 8, 539-544(2021).

    [10] L Zhang, Z Hao, Q Luo, et al. Dual-periodically poled lithium niobate microcavities supporting multiple coupled parametric processes. Optics Letters, 45, 3353-3356(2020).

    [11] Z Hao, L Zhang, W Mao, et al. Second-harmonic generation using d33 in periodically poled lithium niobate microdisk resonators. Photonics Research, 8, 311-317(2020).

    [12] J Lu, J B Surya, X Liu, et al. Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250, 000%/W. Optica, 6, 1455-1460(2019).

    [13] J Y Chen, ZH Ma, Y M Sua, et al. Ultra-efficient frequency conversion in quasi-phase-matched lithium niobate microrings. Optica, 6, 1244-1245(2019).

    [14] Z Hao, L Zhang, A Gao, et al. Periodically poled lithium niobate whispering gallery mode microcavities on a chip. Science China Physics, Mechanics & Astronomy, 61, 114211(2018).

    [15] Y He, Q F Yang, J Ling, et al. Self-starting bi-chromatic LiNbO3 soliton microcomb. Optica, 6, 1138-1144(2019).

    [16] M Zhang, B Buscaino, C Wang, et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature, 568, 373-377(2019).

    [17] C Wang, M Zhang, M Yu, et al. Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation. Nature Communications, 10, 978(2019).

    [18] Z Gong, X Liu, Y Xu, et al. Soliton microcomb generation at 2 μm in z-cut lithium niobate microring resonators. Optics Letters, 44, 3182-3185(2019).

    [19] Z Gong, X Liu, Y Xu, et al. Near-octave lithium niobate soliton microcomb. Optica, 7, 1275-1278(2020).

    [20] [20] Gao R, Zhang H, Bo F, et al. Broadb highly efficient nonlinear optical processes in onchip integrated lithium niobate microdisk resonats of Qfact above 10^8 [J]. arXiv, 2021: 00399.

    [21] B Desiatov, M Lončar. Silicon photodetector for integrated lithium niobate photonics. Applied Physics Letters, 115, 121108(2019).

    [22] [22] Izabella P, Surma B, Marek S, et al. Single crystal growth optical properties of LiNbO3 doped with Er3+, Tm3+ Mg2+[C]Proc SPIE, 1995: 6573.

    [23] M Palatnikov, I Biryukova, N Sidorov, . et al. Growth and concentration dependencies of rare-earth doped lithium niobate single crystals. Journal of Crystal Growth, 291, 390-397(2006).

    [24] W Sohler, B K Das, D Dey, et al. Erbium-doped lithium niobate waveguide lasers. Ieice Transactions On Electronics, 88, 990-997(2005).

    [25] M Fleuster, C Buchal, E Snoeks, et al. Optical and structural properties of MeV erbium‐implanted LiNbO3. Journal of Applied Physics, 75, 173-180(1994).

    [26] S Dutta, E A Goldschmidt, S Barik, et al. Integrated photonic platform for rare-earth ions in thin film lithium niobate. Nano Letters, 20, 741-747(2020).

    [27] S Wang, L Yang, R Cheng, et al. Incorporation of erbium ions into thin-film lithium niobate integrated photonics. Applied Physics Letters, 116, 151103(2020).

    [28] D Pak, H An, A Nandi, et al. Ytterbium-implanted photonic resonators based on thin film lithium niobate. Journal Of Applied Physics, 128, 084302(2020).

    [29] K Xia, F Sardi, C Sauerzapf, . et al. High-speed tunable microcavities coupled to rare-earth quantum emitters. arXiv, 2104, 00389(2021).

    [30] L Yang, S Wang, M Shen, et al. Photonic integration of Er3+: Y2SiO5 with thin-film lithium niobate by flip chip bonding. Optics Express, 29, 15497-15504(2021).

    [31] Y Jia, Y Yao, S Wang, et al. Dual-color upconversion luminescence emission from Er: LiNbO3 on-chip ridge waveguides. Results in Physics, 27, 104526(2021).

    [32] L He, Ş K Özdemir, L Yang. Whispering gallery microcavity lasers. Laser & Photonics Reviews, 7, 60-82(2013).

    [33] L Yang, T Carmon, B Min, et al. Erbium-doped and Raman microlasers on a silicon chip fabricated by the sol–gel process. Applied Physics Letters, 86, 091114(2005).

    [34] Z Wang, Z Fang, Z Liu, et al. On-chip tunable microdisk laser fabricated on Er3+-doped lithium niobate on insulator. Optics Letters, 46, 380-383(2021).

    [35] Y Liu, X Yan, J Wu, et al. On-chip erbium-doped lithium niobate microcavity laser. Science China Physics, Mechanics & Astronomy, 64, 234262(2021).

    [36] Q Luo, Z Hao, C Yang, et al. Microdisk lasers on an erbium-doped lithium-niobite chip. Science China Physics, Mechanics & Astronomy, 64, 234263(2021).

    [37] Q Luo, C Yang, R Zhang, et al. On-chip erbium-doped lithium niobate microring lasers. Optics Letters, 46, 3275-3278(2021).

    [38] D Yin, Y Zhou, Z Liu, et al. Electro-optically tunable microring laser monolithically integrated on lithium niobate on insulator. Optics Letters, 46, 2127-2130(2021).

    [39] Z Yang, J Lu, M Zhuge, et al. Controllable growth of aligned monocrystalline CsPbBr3 microwire arrays for piezoelectric-induced dynamic modulation of single-mode lasing. Advanced Materials, 31, 1900647(2019).

    [40] R Gao, J Guan, N Yao, et al. On-chip ultra-narrow-linewidth single-mode microlaser on lithium niobate on insulator. Optics Letters, 46, 3131-3134(2021).

    [41] R Zhang, C Yang, Z Hao, et al. Integrated lithium niobate single-mode lasers by the Vernier effect. Science China Physics, Mechanics & Astronomy, 64, 294216(2021).

    [42] Z Xiao, K Wu, M Cai, et al. Single-frequency integrated laser on erbium-doped lithium niobate on insulator. Optics Letters, 46, 432921(2021).

    [43] T Li, K Wu, M Cai, et al. A single-frequency single-resonator laser on erbium-doped lithium niobate on insulator. APL Photonics, 6, 101301(2021).

    [44] J Lin, S Farajollahi, Z Fang, et al. Coherent mode-combined ultra-narrow-linewidth single-mode micro-disk. arXiv, 2104, 08843(2021).

    Tools

    Get Citation

    Copy Citation Text

    Qiang Luo, Fang Bo, Yongfa Kong, Guoquan Zhang, Jingjun Xu. Research progresses of microcavity lasers based on lithium niobate on insulator (Invited)[J]. Infrared and Laser Engineering, 2021, 50(11): 20210546

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Special issue-Advanced technology of microcavity photonics materials and devices

    Received: Jul. 10, 2021

    Accepted: --

    Published Online: Dec. 7, 2021

    The Author Email:

    DOI:10.3788/IRLA20210546

    Topics