Acta Photonica Sinica, Volume. 52, Issue 9, 0912002(2023)

3D Object Detection with Fusion Point Attention Mechanism in LiDAR Point Cloud

Weili LIU1,2, Deli ZHU1,2、*, Huahao LUO1,2, and Yi LI3
Author Affiliations
  • 1School of Computer and Information Science,Chongqing Normal University,Chongqing 401331,China
  • 2Chongqing Digital Agricultural Service Engineering Technology Research Center,Chongqing 401331,China
  • 3Information Center of Chongqing Academy of Animal Husbandry,Chongqing 401331,China
  • show less
    Figures & Tables(13)
    Overall framework of PointPillars algorithm
    The overall framework of the improved PointPillars algorithm
    Structure of point-wise spatial attention module
    2D backbone network structure
    CSPNet,BottleNeck network structure
    Comparison of the visualization results of PointPillars and the algorithm in this paper
    • Table 1. CSPNet network structure of this paper

      View table
      View in Article

      Table 1. CSPNet network structure of this paper

      LayerRepeatKernel sizeStrideOutput channels
      Conv2d13×3264
      Stage1Conv131×1132
      Conv21×1132
      BottleNeck

      1×1

      3×3

      32

      32

      Conv31×1164
      Conv2d13×32128
      Stage2Conv151×1164
      Conv21×1164
      BottleNeck

      1×1

      3×3

      64

      64

      Conv31×11128
      Conv2d13×32256
      Stage3Conv151×11128
      Conv21×11128
      BottleNeck

      1×1

      3×3

      128

      128

      Conv31×11256
    • Table 2. Data division in three scenarios

      View table
      View in Article

      Table 2. Data division in three scenarios

      EasyModerateHard
      Min height of bounding box40 pixels25 pixels25 pixels
      Max blocking levelFully visiblePartially obscuredHard to see
      Maximum cut-off15%30%50%
    • Table 3. Experimental environment configuration

      View table
      View in Article

      Table 3. Experimental environment configuration

      Experimental environmentConfiguration
      Operating systemUbantu 16.04
      ProcessorIntel Xeon Silver 411
      Memory64 GB
      Video cardNVIDIA TITAN V
      Deep learning frameworkPytorch 1.5
      Development languagePython 3.7
    • Table 4. Comparison of AP for different methods(%)

      View table
      View in Article

      Table 4. Comparison of AP for different methods(%)

      Method/R40Car-3D(IoU=0.7)Car-BEV(IoU=0.7)
      EasyModerateHardEasyModerateHard
      F-PointNets2582.1969.7960..5991.1784.6774.77
      VoxelNet1087.9375.3773.2189.3579.2677.39
      SECOND1283.3472.5565.8289.3983.7778.59
      PointPillars1386.2976.7773.9291.8988.0787.02
      TANet2684.3975.9468.8275.7059.4452.53
      SegVoxelNet2786.0476.1270.7691.6286.3783.04
      PointRCNN886.9675.6470.7092.1387.3982.72
      Part-A22887.8178.4973.5191.7087.7984.61
      Ours88.5279.0276.2292.6388.5387.16
    • Table 5. Inference speed comparison among different methods

      View table
      View in Article

      Table 5. Inference speed comparison among different methods

      MethodReasoning speed/(frame·s-1
      F-PointNets250.169
      VoxelNet100.033
      SECOND120.380
      3DSSD90.04
      TANet260.035
      SegVoxelNet270.04
      PointRCNN80.067
      Part-A2280.08
      SA-SSD300.04
      Ours0.037 2
    • Table 6. Average precision of 3D detection for ablation experiments in the KITTI test set(%)

      View table
      View in Article

      Table 6. Average precision of 3D detection for ablation experiments in the KITTI test set(%)

      MethodCar-3D(IoU=0.7)
      EasyModerateHard
      PointPillars86.2976.7773.92
      PPPA87.7278.2375.13
      PPCSP87.8378.3075.60
      PPCSP+PPPA88.5279.0276.22
    • Table 7. Average precision of detection in the BEV scenario of the KITTI test focused ablation experiment(%)

      View table
      View in Article

      Table 7. Average precision of detection in the BEV scenario of the KITTI test focused ablation experiment(%)

      MethodCar-BEV(IoU=0.7)
      EasyModerateHard
      PointPillars91.8988.0787.02
      PPPA92.5688.6087.24
      PPCSP92.1388.0286.68
      PPCSP+PPPA92.6388.5387.16
    Tools

    Get Citation

    Copy Citation Text

    Weili LIU, Deli ZHU, Huahao LUO, Yi LI. 3D Object Detection with Fusion Point Attention Mechanism in LiDAR Point Cloud[J]. Acta Photonica Sinica, 2023, 52(9): 0912002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Instrumentation, Measurement and Metrology

    Received: Apr. 4, 2023

    Accepted: May. 17, 2023

    Published Online: Oct. 24, 2023

    The Author Email: ZHU Deli (463453339@qq.com)

    DOI:10.3788/gzxb20235209.0912002

    Topics