Acta Optica Sinica, Volume. 41, Issue 18, 1811001(2021)

Relative Orientation Method for Airborne Pushbroom Combined Imaging System

Jingmei Li1,2, Yongxiang Fan3、*, Ning Wang1, Lingling Ma1, Hongjia Cheng1, Yonggang Qian1, Yifang Niu1, Chuanrong Li1, Lingli Tang1, and Qingchuan Zheng4
Author Affiliations
  • 1Key Laboratory of Quantitative Remote Sensing Information Technology, Aerospace Information Reasearch Institute, Chinese Academy of Sciences, Beijing 100094, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • 3JI HUA Laboratory, Foshan, Guangdong 528000, China
  • 4Inner Mongolia North Heavy Industries Group Co., Ltd, Baotou, Inner Mongolia 0 14033, China
  • show less
    References(22)

    [1] Jia J X, Wang Y M, Chen J S et al. Status and application of advanced airborne hyperspectral imaging technology: a review[J]. Infrared Physics & Technology, 104, 103115(2020).

    [2] Qi H X, Yao B, Wang J Y et al. The design of a wide-angle and wide spectral range pushbroom hyperspectral imager[J]. Proceedings of SPIE, 9263, 92630F(2014).

    [3] Zhang D, Yuan L Y, Wang S W et al. Wide swath and high resolution airborne hyperspectral imaging system and flight validation[J]. Sensors, 19, 1667(2019).

    [4] Hu F, Jin S Y. Study on the development of wide swath imaging technology about high-resolution optical remote sensing satellites[J]. Geomatics World, 24, 45-50(2017).

    [5] Hu F. Research on inner FOV stitching theories and algorithms for sub-images of three non-collinear TDI CCD chips[D]. Wuhan: Wuhan University(2010).

    [6] Zhang G, Liu B, Jiang W S. Inner FOV stitching algorithm of spaceborne optical sensor based on the virtual CCD line[J]. Journal of Image and Graphics, 17, 696-701(2012).

    [7] Tang X M, Hu F, Wang M et al. Inner FoV stitching of spaceborne TDI CCD images based on sensor geometry and projection plane in object space[J]. Remote Sensing, 6, 6386-6406(2014).

    [8] Pan J, Hu F, Wang M et al. Inner FOV stitching of ZY-102C HR camera based on virtual CCD line[J]. Geomatics and Information Science of Wuhan University, 40, 436-443(2015).

    [9] Wang H, Mo F, Li Q J et al. Inner FOV stitching of spaceborne multispectral camera based on virtual CCD line under back projection in object-space[J]. Spacecraft Recovery & Remote Sensing, 40, 118-125(2019).

    [10] Jiang Y H, Xu K, Zhao R S et al. Stitching images of dual-cameras onboard satellite[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 128, 274-286(2017).

    [11] Cheng Y F, Jin S Y, Wang M et al. An high accuracy image mosaicking approach of optical remote sensing satellite for multi-camera system[J]. Acta Optica Sinica, 37, 0828003(2017).

    [12] Cheng Y F, Jin S Y, Wang M et al. Image mosaicking approach for a double-camera system in the GaoFen2 optical remote sensing satellite based on the big virtual camera[J]. Sensors, 17, 1441(2017).

    [13] Wang M, Tian Y, Cheng Y F. Development of on-orbit geometric calibration for high resolution optical remote sensing satellite[J]. Geomatics and Information Science of Wuhan University, 42, 1580-1588(2017).

    [14] Li K, Zhang Y S, Meng W C et al. Point-source-target-based method for space remote sensing geometric calibration and positioning accuracy improvement[J]. Acta Optica Sinica, 40, 1828003(2020).

    [15] Yeh C K. Tsai V J D. Self-calibrated direct geo-referencing of airborne pushbroom hyperspectral images[C]∥2011 IEEE International Geoscience and Remote Sensing Symposium, July 24-29, 2011, Vancouver, BC, Canada., 2881-2883(2011).

    [16] Wang M, Hu J, Zhou M, Remote Sensing, Spatial Information Sciences et al. XL-, 1/W1, 369-372(2013).

    [17] Zhang A W, Hu S X, Meng X G et al. Toward high altitude airship ground-based boresight calibration of hyperspectral pushbroom imaging sensors[J]. Remote Sensing, 7, 17297-17311(2015).

    [18] Habib A, Zhou T, Masjedi A et al. Boresight calibration of GNSS/INS-assisted push-broom hyperspectral scanners on UAV platforms[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11, 1734-1749(2018).

    [19] Zhang L Y. Research and realization on registration technology of narrow overlapping imaging spectrometer data[D]. Jinan: Shandong University(2016).

    [20] Liu J, Wang D H, transformation between HPR. 3. 1(5):, 5, 54-56(2006).

    [21] Du X P, Guo H D, Fan X T et al. Vertical accuracy assessment of SRTM and ASTER GDEM over typical regions of China using ICESat/GLAS[J]. Earth Science, 38, 887-897(2013).

    [22] Takaku J, Tadono T, Tsutsui K, Spatial Information Science et al. Prague. Czech Republic: ISPRS, 2016, III-, 4, 25-31(2016).

    Tools

    Get Citation

    Copy Citation Text

    Jingmei Li, Yongxiang Fan, Ning Wang, Lingling Ma, Hongjia Cheng, Yonggang Qian, Yifang Niu, Chuanrong Li, Lingli Tang, Qingchuan Zheng. Relative Orientation Method for Airborne Pushbroom Combined Imaging System[J]. Acta Optica Sinica, 2021, 41(18): 1811001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Imaging Systems

    Received: Feb. 22, 2021

    Accepted: Apr. 1, 2021

    Published Online: Sep. 3, 2021

    The Author Email: Fan Yongxiang (fanyx@jihualab.com)

    DOI:10.3788/AOS202141.1811001

    Topics