Journal of Innovative Optical Health Sciences, Volume. 7, Issue 5, 1440001(2014)

Advanced optical microscopy methods for in vivo imaging of sub-cellular structures in thick biological tissues

Nanguang Chen1...2, Shakil Rehman1,2 and Colin J. R. Sheppard3,* |Show fewer author(s)
Author Affiliations
  • 1Department of Biomedical Engineering National University of Singapore, Singapore 117576
  • 2Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore 138602
  • 3Department of Nanophysics, Istituto Italiano di Tecnologia via Morego 30, 16163 Genova, Italy
  • show less
    References(188)

    [1] [1] W.-F. Cheong, S. A. Prahl, A. J. Welch, "A review of the optical properties of biological tissue," IEEE J. Quantum Electron. 26, 2166–2185 (1990).

    [2] [2] Y. Ueno, M. Shimizu, "An optical-fiber cable fault location method," IEEE J. Quantum Electron. 75, 77D–78D (1975).

    [3] [3] M. K. Barnoski, S. M. Jensen, "Fibre waveguides: A novel technique for investigating attenuation characteristics," Appl. Opt. 15, 2112–2115 (1976).

    [4] [4] F. G. Fujimoto, S. De Silvestri, E. P. Ippen, C. A. Puliafito, R. Margolis, A. Oseroff, "Femtosecond optical ranging in biological systems," Opt. Lett. 11, 150–152 (1986).

    [5] [5] K. M. Yoo, R. R. Alfano, "Time-resolved coherent and incoherent components of forward light scattering in random media," Opt. Lett. 15, 320–322 (1990).

    [6] [6] S. L. Jacques, "Time resolved propagation of ultrashort laser pulses within turbid tissue," Appl. Opt. 28, 2223–2229 (1989).

    [7] [7] S. Anderson-Engels, R. Berg, O. Jarlmann, S. Svanberg, "Time- resolved transillumination for medical diagnostics," Opt. Lett. 15, 1179–1181 (1990).

    [8] [8] D. G. Papaioannou, G. W. Hooft, J. J. M. Baselman, M. J. C. van Gemert, "Image quality in timeresolved transillumination of highly scattering medium," Appl. Opt. 34, 6144–6157 (1995).

    [9] [9] R. I. MacDonald, "Frequency domain optical reflectometry," Appl. Opt. 20, 1840–1844 (1981).

    [10] [10] W. Eickhoff, R. Ulrich, "Optical frequency-domain reflectometry in single-mode fiber," Appl. Phys. Lett. 39, 693–695 (1981).

    [11] [11] M. Davidson, K. Kaufman, I. Mazor, F. Cohen, "An application of interference microscopy to integrated circuit inspection and metrology," Proc. SPIE, Vol. 775, pp. 233–247 (1987).

    [12] [12] E. Beaurepaire, A.-C. Boccara, M. Lebec, L. Blanchot, H. Saint-Jalmes, "Full-field optical coherence tomography," Opt. Lett. 23, 244–246 (1998).

    [13] [13] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Lee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178–1181 (1991).

    [14] [14] C. J. R. Sheppard, T. Wilson, "Effects of high angles of convergence on V ezT in the scanning acoustic microscope," App. Phys. Lett. 38, 858–859 (1981).

    [15] [15] D. K. Hamilton, T. Wilson, C. J. R. Sheppard, "Experimental observations of the depth-discrimination properties of scanning microscopes," Opt. Lett. 6, 625–626 (1981).

    [16] [16] I. J. Cox, "Scanning optical fluorescence microscopy," J. Microsc. 133, 149–154 (1984).

    [17] [17] C. J. Cogswell, C. J. R. Sheppard, "Imaging using confocal brightfield techniques," Institute of Physics Conference Series 98, 633–638 (1990).

    [18] [18] C. J. Cogswell, D. K. Hamilton, C. J. R. Sheppard, "Colour reflection microscopy using red, green and blue lasers," J. Microsc. 165, 103–117 (1992).

    [19] [19] C. J. R. Sheppard, T. Wilson, "Depth of field in the scanning microscope," Opt. Lett. 3, 115–117 (1978).

    [20] [20] J. M. Schmitt, A. Kniittel, M. Yadlowsky, "Confocal microscopy in turbid media," J. Opt. Soc. Am. A 11, 2226–2235 (1994).

    [21] [21] M. Minsky, "Microscopy apparatus," US Patent 3,013,467 filed 7 November, 1957 (1961).

    [22] [22] Z. Koana, J. Illumination Eng. Inst. 26, 371–385 (1942).

    [23] [23] H. Naora, "Microspectrophotometry and cytochemical analysis of nucleic acids," Science 114, 279–280 (1951).

    [24] [24] C. J. R. Sheppard, A. Choudhury, "Image formation in the scanning microscope," Opt. Acta 24, 1051–1073 (1977).

    [25] [25] C. J. R. Sheppard, X. Mao, "Confocal microscopes with slit apertures," J. Mod. Opt. 35, 1169–1185 (1988).

    [26] [26] R. Wolleschensky, B. Zimmermann, "High-speed confocal fluorescence imaging with a novel line scanning microscope," J. Biomed. Opt. 11, 064011 (2006).

    [27] [27] H. Goldman, "Spaltlampenphotographie undphotometrie," Ophthalmologica 98, 257–270 (1940).

    [28] [28] M. Petran, M. Hadravsky, D. Egger, R. Galambos, "Tandem scanning reflected light microscope," J. Opt. Soc. Am. 58, 661–664 (1968).

    [29] [29] M. D. Egger, M. Petran, "New reflected-light microscope for viewing unstained brain and ganglion cells," Science 305–307 (1967).

    [30] [30] C. J. R. Sheppard, T. Wilson, "The theory of the direct-view confocal microscope," J. Microsc. 124, 107–117 (1981).

    [31] [31] C. J. R. Sheppard, T. Wilson, "Image formation in scanning microscopes with partially coherent source and detector," Opt. Acta 25, 315–325 (1978).

    [32] [32] T. Wilson, A. R. Carlini, "Size of detector in confocal imaging systems," Opt. Lett. 12, 227–229 (1987).

    [33] [33] M. Gu, C. J. R. Sheppard, "Three-dimensional imaging in confocal fluorescent microscopy with annular lenses," J. Mod. Opt. 38, 2247–2263 (1991).

    [34] [34] M. Gu, C. J. R. Sheppard, "Confocal fluorescent microscopy with a finite-sized circular detector," J. Opt. Soc. Am. A 9, 151–153 (1992).

    [35] [35] M. Gu, T. Tannous, C. J. R. Sheppard, "Effect of numerical aperture, pinhole size and annular pupil on confocal imaging through highly scattering media," Opt. Lett. 21, 312–314 (1996).

    [36] [36] M. Kempe, A. Z. Genack, W. Rudolph, P. Dorn, "Ballistic and diffuse light detection in confocal and heterodyne imaging systems," J. Opt. Soc. Am. A 14, 216–223 (1997).

    [37] [37] X. S. Gan, S. P. Schilders, M. Gu, "Image formation in turbid media under a microscope," J. Opt. Soc. Am. A 15, 2052–2058 (1998).

    [38] [38] L. Giniunas, R. Juskaitis, S. V. Shatalin, "Scanning fiber-optic microscope," Electron. Letters 27, 724–726 (1991).

    [39] [39] T. Dabbs, M. Glass, "Single-mode fibers used as confocal microscope pinholes," Appl. Opt. 31, 705– 706 (1992).

    [40] [40] P. M. Delaney, M. H. Harris, R. G. King, "Fibreoptic laser scanning confocal microscopy suitable for fluorescence imaging," Appl. Opt. 33, 573–577 (1994).

    [41] [41] M. Gu, C. J. R. Sheppard, "Signal level of the fibre optical confocal scanning microscope," J. Mod. Opt. 38, 1621–1630 (1991).

    [42] [42] M. Gu, C. J. R. Sheppard, "Axial resolution in the fibre-optical confocal scanning microscope using annular lenses," Opt. Commun. 88, 27–32 (1992).

    [43] [43] W. Lukosz, M. Marchand, "Optischen Abbildung unter überschreitung der Beugungsbedingten Aufl€osungsgrenze," Opt. Acta 10, 241–255 (1963).

    [44] [44] M. M. A. Neil, R. Juskaitis, T. Wilson, "Method for obtaining optical sectioning by using structured light in a conventional microscope," Opt. Lett. 22, 1905–1907 (1997).

    [45] [45] M. G. L. Gustafsson, D. A. Agard, J. W. Sedat, "I5M: 3D widefield light microscopy with better than 100nm axial resolution," J. Microsc. 195, 10–16 (1999).

    [46] [46] M. Gustafsson, "Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy," J. Microsc. 198, 82–87 (2000).

    [47] [47] V. J. Corcoran, "Directional characteristics in optical heterodyne detection processes," J. Appl. Phys. 36, 1819–1825 (1965).

    [48] [48] Y. Fujii, H. Takimoto, "Imaging properties due to the optical heterodyne and its application to laser microscopy," Opt. Comm. 18, 45–47 (1976).

    [49] [49] T. Sawatari, "Optical heterodyne scanning microscope," Appl. Opt. 12, 2768–2772 (1973).

    [50] [50] M. Kempe, W. Rudolph, "Scanning microscopy through thick layers based on linear correlation," Opt. Lett. 19, 1919–1921 (1994).

    [51] [51] M. Kempe, W. Rudolf, "Comparative study of confocal and heterodyne microscopy for imaging through scattering media," J. Opt. Soc. Am. A 13, 46–52 (1996).

    [52] [52] J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, J. G. Fujimoto, "Optical coherence microscopy in scattering media," Opt. Lett. 19, 590–592 (1994).

    [53] [53] H. Siedentopf, R. Zsigmondy, "Uber Sichtbarmachung und Gr€ossenbestimmung ultramikroskopischer Teilchen, mit besonderer Anwendung auf Goldrubingl ser," Ann. der Phys. 10, 1–39 (1903).

    [54] [54] D. M. Maurice, "Cellular membrane activity in the corneal endothelium of the intact eye," Experientia 15, 1094–1095 (1968).

    [55] [55] D. M. Maurice, "A scanning slit optical microscope," Invest. Ophthalmol. 13, 1033–1037 (1974).

    [56] [56] C. J. Koester, "A scanning mirror microscope with optical sectioning characteristics: Applications in ophthalmology," Appl. Opt. 19, 1749–1757 (1980).

    [57] [57] C. J. Koester, "Comparison of optical sectioning methods: The scanning slit confocal microscope," in Handbook of Confocal Microscopy, J. Pawley, Ed., Plenum Press, New York, 525–533 (1990).

    [58] [58] P. J. Dwyer, C. A. DiMarzio, "Confocal reflectance theta line scanning microscope for imaging human skin in vivo," Opt. Lett. 31, 942–944 (2006).

    [59] [59] P. J. Dwyer, C. A. DiMarzio, M. Rajadhyaksha, "Confocal theta line-scanning microscope for imaging human tissues," Appl. Opt. 46, 1843–1851 (2007).

    [60] [60] C. J. R. Sheppard, M. D. Sharma, "Integrated intensity, and imaging through scattering media," J. Mod. Opt. 48, 1517–1525 (2001).

    [61] [61] C. J. R. Sheppard, W. Gong, K. Si, "The divided aperture technique for microscopy through scattering media," Opt. Exp. 33, 1599–1602 (2008).

    [62] [62] W. Gong, K. Si, C. J. R. Sheppard, "Optimization of axial resolution in confocal microscope with D-shaped apertures," Appl. Opt. 48, 3998–4002 (2009).

    [63] [63] W. Gong, K. Si, C. J. R. Sheppard, "Divided-aperture technique for fluorescence confocal microscopy through scattering media," Appl. Opt. 49, 752–757 (2010).

    [64] [64] E. H. K. Stelzer, S. Lindek, S. Albrecht, R. Pick, G. Ritter, N. J. Salmon, R. Stricker, "A new tool for the observation of embryos and other large specimens - confocal theta-fluorescence microscopy," J. Microsc. 179, 1–10 (1995).

    [65] [65] R. H. Webb, F. Rogomentich, "Confocal microscope with large field and working distance," Appl. Opt. 38, 4870–4875 (1999).

    [66] [66] T. D. Wang, M. J. Mandella, C. H. Contag, G. S. Kino, "Dual-axis confocal microscope for highresolution in vivo imaging," Opt. Lett. 28, 414–416 (2003).

    [67] [67] T. D. Wang, C. H. Contag, M. J. Mandella, N. Y. Chan, G. S. Kino, "Dual-axes confocal microscopy with post-objective scanning and low-coherence heterodyne detection," Opt. Lett. 28, 1915–1917 (2003).

    [68] [68] J. T. C. Liu, M. J. Mandella, S. Friedland, R. Soetikno, J. H. Crawford, C. H. Contag, G. S. Kino, T. D. Wang, "Dual-axes confocal reflectance microscope for distinguishing colonic neoplasia," J. Biomed. Opt. 11, 054019 (2006).

    [69] [69] L. K. Wong, M. J. Mandella, G. S. Kino, T. D. Wang, "Improved rejection of multiply scattered photons in confocal microscopy using dual-axes architecture," Opt. Lett. 32, 1674–1676 (2007).

    [70] [70] C. J. R. Sheppard, M. Gu, "Optical sectioning in confocal microscopes with annular pupil," Optik 86, 169–172 (1991).

    [71] [71] C. J. R. Sheppard, M. Gu, "Improvement of axial resolution in confocal microscopy using an annular pupil," Opt. Commun. 84, 7–13 (1991).

    [72] [72] M. Gu, C. J. R. Sheppard, H. Zhou, "Optimization of axial resolution in confocal imaging using annular pupils," Optik 93, 87–90 (1993).

    [73] [73] X. S. Gan, S. P. Schilders, M. Gu, "Combination of annular aperture and polarization gating methods for efficient microscopic imaging through turbid medium: Theoretical analysis," Microsc. Anal. 3, 495–503 (1997).

    [74] [74] M. Gu, C. J. R. Sheppard, "Effects of annular pupils on confocal fluorescent imaging," J. Mod. Opt. 39, 1883–1896 (1992).

    [75] [75] M. Gu, T. Tannous, C. J. R. Sheppard, "Improved axial resolution in confocal fluorescence microscopy using annular pupils," Opt. Commun. 110, 533– 539 (1994).

    [76] [76] A. H. Voie, "Three-dimensional reconstruction of the cochlear from two-dimensional images of optical sections," Comput. Med. Imag. Graph. 19, 377–384 (1995).

    [77] [77] J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, E. H. K. Stelzer, "Optical sectioning deep inside live embryos by selective plane illumination microscopy," Science 305, 1007–1009 (2004).

    [78] [78] C. J. Engelbrecht, E. H. K. Stelzer, "Resolution enhancement in a light-sheet-based microscope (SPIM)," Opt. Lett. 31, 1477–1479 (2006).

    [79] [79] J. Huisken, D. Y. R. Stainier, "Even fluorescence excitation by multidirectional selective plane illumination microscopy (mSPIM)," Opt. Lett. 32, 2608–2610 (2007).

    [80] [80] H.-U. Dodt, U. Leischner, A. Schierloh, N. J hling, C. Mauch, K. Deininger, J. M. Deussing, M. Eder, W. Zieglg nsberger, K. Becker, "Ultramicroscopy: Three-dimensional visualization of neuronal networks in the whole mouse brain," Nat. Meth. 4, 331–336 (2007).

    [81] [81] T. Breuninger, K. Greger, E. H. K. Stelzer, "Lateral modulation boosts image quality in single plane illumination fluorescence microscopy," Opt. Lett. 32, 1938–1940 (2007).

    [82] [82] F. O. Fahrbach, P. Simon, A. Rohrbach, "Microscopy with self-reconstructing beams," Nat. Photon. 4, 780–785 (2010).

    [83] [83] F. O. Fahrbach, A. Rohrbach, "A line scanned light-sheet microscope with phase shaped selfreconstructing beams," Opt. Exp. 18, 24229–24244 (2010).

    [84] [84] T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, E. Betzig, "Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination," Nat. Meth. 8, 417–423 (2011).

    [85] [85] S. Kalchmair, N. Jaerling, K. Becker, H.-U. Dodt, "Image contrast enhancement in confocal ultramicroscopy," Opt. Lett. 35, 79–81 (2010).

    [86] [86] C. Tjokro, C. J. R. Sheppard, "Photon scattering phase space analysis in multiplanes within a microscope system," Proc. SPIE, Vol. 6163, U1630 (2006).

    [87] [87] C. Tjokro, C. J. R. Sheppard, "Effects of apertures on scattered light: A Monte Carlo study of confocal imaging," Proc. SPIE, Vol. 6536, G5350 (2007).

    [88] [88] H. Horinaka, K. Hashimoto, K. Wada, Y. Cho, M. Osawa, "Extraction of quasi-straightforwardpropagating photons from diffused light transmitting through a scattering medium by polarization modulation," Opt. Lett. 20, 1501–1503 (1995).

    [89] [89] K. M. Yoo, R. R. Alfano, "Time resolved depolarization of multiple backscattering light from random media," Phys. Lett. A 142, 531–536 (1989).

    [90] [90] X. S. Gan, S. P. Schilders, M. Gu, "Image enhancement through turbid media under a microscope by use of polarization gating methods," J. Opt. Soc. Am. A 16, 2177–2184 (1999).

    [91] [91] C. J. R. Sheppard, R. Kompfner, "Resonant scanning optical microscope," Appl. Opt. 17, 2879– 2882 (1978).

    [92] [92] R. Hellwarth, P. Christiansen, "Nonlinear optical microscopic examination of structure in polycrystalline ZnSe," Opt. Commun. 12, 312–322 (1974).

    [93] [93] R. Hellwarth, P. Christiansen, "Nonlinear optical microscope using second harmonic generation," Appl. Opt. 14, 247–248 (1975).

    [94] [94] C. J. R. Sheppard, R. Kompfner, J. Gannaway, D. Walsh, "The scanning harmonic optical microscope," IEEE J. Quantum Electron. 13, 100D (1977).

    [95] [95] J. Gannaway, C. J. R. Sheppard, "Second harmonic imaging in the scanning optical microscope," Opt. Quantum Electron. 10, 435–439 (1978).

    [96] [96] I. Freund, M. Deutsch, "Second-harmonic microscopy of biological tissue," Opt. Lett. 11, 94–96 (1986).

    [97] [97] I. Freund, M. Deutsch, A. Sprecher, "Connective tissue polarity, optical second harmonic microscopy, crossed-beam summation and small-angle scattering in rat-tail tendon," Biophys. J. 50, 693–712 (1986).

    [98] [98] M. D. Duncan, J. Reintjes, T. J. Manuccia, "Scanning coherent anti-Stokes Raman microscope," Opt. Lett. 7 (1982).

    [99] [99] W. Denk, J. H. Strickler, W. W. Webb, "Twophoton laser scanning fluorescence microscopy," Science 248, 73–76 (1990).

    [100] [100] W. Denk, J. P. Strickler, W. W. Webb, "Twophoton laser microscopy," US Patent 5034613 (1991).

    [101] [101] M. Muller, J. Squier, K. R. Wilson, G. J. Brakenho ff, "3D microscopy of transparent objects using third-harmonic generation," J. Microsc. 191, 266– 274 (1998).

    [102] [102] S. W. Hell, K. Bahlmann, M. Schrader, M. Soini, H. Malak, I. Gryczynski, J. R. Lakowicz, "Threephoton excitation in fluorescence microscopy," J. Biomed. Opt. 1, 71–74 (1996).

    [103] [103] C. J. R. Sheppard, "Image formation in threephoton fluorescence microscopy," Bioimaging 4, 124–128 (1996).

    [104] [104] M. Gu, "Resolution in three-photon fluorescence scanning microscopy," Opt. Lett. 21, 988–990 (1996).

    [105] [105] R. Gauderon, P. B. Lukins, C. J. R. Sheppard, "Simultaneous multi-channel two-photon microscopy," Micron 32, 685–689 (2001).

    [106] [106] M. Gu, C. J. R. Sheppard, "Comparison of threedimensional imaging properties between twophoton and single-photon fluorescence microscopy," J. Microsc. 177(2), 128–137 (1995).

    [107] [107] X. S. Gan, M. Gu, "Confocal fluorescence can rely on chemically or biologically specific fluorescent labels, or intrinsic autofluorescence," J. Appl. Phys. 87, 3214–3221 (2000).

    [108] [108] M. Gu, C. J. R. Sheppard, "Effects of a finite-sized pinhole on 3-D image formation in confocal twophoton fluorescence microscopy," J. Mod. Opt. 40, 2009–2024 (1993).

    [109] [109] R. Gauderon, C. J. R. Sheppard, "Improvement in imaging in confocal fluorescent microscopes using detector arrays," Bioimaging 6, 126–129 (1998).

    [110] [110] R. Gauderon, P. B. Lukins, C. J. R. Sheppard, "Effect of a confocal pinhole in two-photon microscopy," Microsc. Res. Tech. 47, 210–214 (1999).

    [111] [111] R. Gauderon, C. J. R. Sheppard, "Effect of a finitesize pinhole on the noise performance in single-, two- and three-photon fluorescence microscopy," Appl. Opt. 38, 3562–3565 (1999).

    [112] [112] P. T€or€ok, C. J. R. Sheppard, "The role of pinhole size in high-aperture two- and three-photon microscopy," in Confocal and Two-Photon Microscopy: Foundations, Applications and Advances, A. Diaspro, Ed., pp. 127–152, Wiley- Liss, New York (2002).

    [113] [113] S. Maiti, J. B. Shear, R. M. Williams, W. R. Zipfel, W. W. Webb, "Measuring serotonin distribution in live cells with three-photon excitation," Science 275, 530–532 (1997).

    [114] [114] M. Schrader, K. Bahlmann, S. W. Hell, "Threephoton- excitation microscopy: Theory, experiment and applications," Optik 104, 116–124 (1997).

    [115] [115] P. J. Campagnola, M.-d. Wei, A. Lewis, L. M. Loew, "High-resolution nonlinear optical imaging of live cells by second harmonic generation," Biophys. J. 77, 3341–3349 (1999).

    [116] [116] R. Gauderon, P. B. Lukins, C. J. R. Sheppard, "Three-dimensional second-harmonic generation imaging with femtosecond laser pulses," Opt. Lett. 23, 1209–1211 (1998).

    [117] [117] J. N. Gannaway, C. J. R. Sheppard, "Second-harmonic imaging in the scanning optical microscope," Opt. Quantum Electron. 10, 435–439 (1978).

    [118] [118] C. J. R. Sheppard, R. Kompfner, "Resonant scanning optical microscope," Appl. Opt. 17, 2879– 2882 (1978).

    [119] [119] M. D. Duncan, J. Reintjes, T. J. Manuccia, "Scanning coherent anti-Stokes Raman microscope," Opt. Lett. 7, 350 (1982).

    [120] [120] Y. Barad, H. Eisenberg, M. Horowitz, Y. Silberberg, "Nonlinear scanning laser microscopy by third-harmonic generation," App. Phys. Lett. 70, 922–924 (1997).

    [121] [121] M. Müller, J. Squier, K. R. Wilson, G. J. Brakenho ff, "3D-microscopy of transparent objects using third-harmonic generation," J. Microsc. 191, 266– 274 (1998).

    [122] [122] J. A. Squier, M. Muller, G. J. Brakenhoff, "Third harmonic generation microscopy," Opt. Exp. 3, 315–324 (1998).

    [123] [123] D. Yelin, Y. Silberberg, "Laser scanning thirdharmonic- generation microscopy in biology," Opt. Exp. 5, 169–175 (1999).

    [124] [124] P. Theer, M. T. Hasan, W. Denk, "Two-photon imaging to a depth of 1000 μm in living brains by use of a Ti:Al2O3 regenerative amplifier," Opt. Lett. 28, 1022–1024 (2003).

    [125] [125] M. Müller, J. Squier, R. Wolleschensky, U. Simon, G. J. Brakenhoff, "Dispersion pre-compensation of 15 femtosecond optical pulses for high-numericalaperture objectives," J. Microsc. 191, 141–150 (1998).

    [126] [126] S. Sakadzic, U. Demirbas, T. R. Mempel, A. Moore, S. Ruvinskaya, D. A. Boas, A. Sennaroglu, F. X. Kaertner, J. G. Fujimoto, "Multi-photon microscopy with a low-cost and highly efficient Cr: licaf laser," Opt. Exp. 16, 20848–20863 (2008).

    [127] [127] S.-W. Chu, I.-H. Chen, T.-M. Liu, P. C. Chen, C.-K. Sun, B.-L. Lin, "Multimodal nonlinear spectral microscopy based on a femtosecond Cr: forsterite laser," Opt. Lett. 26, 1909–1911 (2001).

    [128] [128] S.-W. Chu, S. Chen, T. Tsai, T.-M. Liu, C. P. Lin, H. Tsai, C.-K. Sun, "In vivo developmental biology study using noninvasive multi-harmonic generation microscopy," Opt. Exp. 11, 3093–3099 (2003).

    [129] [129] M. Balu, T. Baldacchini, J. Carter, T. B. Krasieva, R. Zadoyan, B. J. Tromberg, "Effect of excitation wavelength on penetration depth in nonlinear optical microscopy of turbid media," J. Biomed. Opt. 14, 010508 (2009).

    [130] [130] T. Yasui, Y. Takahashi, M. Ito, S. Fukushima, T. Araki, "Ex vivo and in vivo second-harmonic generation imaging of dermal collagen fiber in skin: Comparison of imaging characteristics between modelocked Cr:forsterite and Ti:sapphire lasers," Appl. Opt. 48, D88–D95 (2009).

    [131] [131] D. Kobat, M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, C. Xu, "Deep tissue multiphoton microscopy using longer wavelength excitation," Opt. Exp. 17, 13354–13364 (2009).

    [132] [132] D. Kobat, N. G. Horton, C. Xu, "In vivo twophoton microscopy to 1.6-mm depth in mouse cortex," J. Biomed. Opt. 16, 106014 (2011).

    [133] [133] N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, C. Xu, "In vivo threephoton microscopy of subcortical structures within an intact mouse brain," Nat. Photon. 7, 205–209 (2013).

    [134] [134] J. Bewersdorf, R. Pick, S. W. Hell, "Multifocal multi-photon microscopy," Opt. Lett. 23, 655–657 (1998).

    [135] [135] A. H. Buist, M. Müller, J. Squier, G. J. Brakenhoff, "Real time two photon absorption microscopy using multipoint excitation," J. Microsc. 192, 217–226 (1998).

    [136] [136] J. Qu, L. Liu, Y. Shao, H. Niu, B. Z. Gao, "Recent progress in multifocal multiphoton microscopy," J. Innovative Opt. Health Sci. 5, 1250018 (2012).

    [137] [137] H. Kim, C. Buehler, P. T. C. So, "High-speed twophoton scanning microscope," Appl. Opt. 38, 6004–6009 (1999).

    [138] [138] G. Y. Fan, H. Fujisaki, A. Miyawaki, R.-K. Tsay, R. Y. Tsien, M. H. Ellisman, "Video-rate scanning two-photon excitation fluorescence microscopy and ratio imaging with Cameleons," Biophys. J. 78, 2412–2420 (1999).

    [139] [139] V. Iyer, B. E. Losavio, P. Saggau, "Compensation of spatial and temporal dispersion for acousto-optic multiphoton laser-scanning microscopy," J. Biomed. Opt. 8, 460–471 (2003).

    [140] [140] R. Kurtz, M. Fricke, J. Kalb, P. Tinnefeld, M. Sauer, "Application of multiline two-photon microscopy to functional in vivo imaging," J. Neurosci. Methods 151, 276–286 (2006).

    [141] [141] K. Bahlmann, P. T. So, M. Kirber, R. Reich, B. Kosicki, W. McGonagle, K. Bellve, "Multifocal multiphoton microscopy (MMM) at a frame rate beyond 600 Hz," Opt. Exp. 15, 10991–10998 (2007).

    [142] [142] K. H. Kim, C. Buehler, K. Bahlmann, T. Ragan, W.-C. A. Lee, E. Nedivi, E. L. Heffer, S. Fantini, P. T. C. So, "Multifocal multiphoton microscopy based on multianode photomultiplier tubes," Opt. Exp. 15, 11658–11678 (2007).

    [143] [143] M. Kempe, W. Rudolph, "Impact of chromatic and spherical aberration on the focusing of ultrashort light pulses by lenses," Opt. Lett. 18, 137–139 (1993).

    [144] [144] E. Papagiakoumou, V. de Sars, V. Emiliani, D. Oron, "Temporal focusing with spatially modulated excitation," Opt. Exp. 17, 5391–5401 (2009).

    [145] [145] H. Dana, S. Shoham, "Numerical evaluation of temporal focusing characteristics in transparent and scattering media," Opt. Exp. 14, 4937–4948 (2011).

    [146] [146] D. Oron, Y. Silberberg, "Spatiotemporal coherent control using shaped, temporally focused pulses," Opt. Exp. 13, 9903–9908 (2005).

    [147] [147] G. Zhu, J. van Howe, M. Durst, W. Zipfel, C. Xu, "Simultaneous spatial and temporal focusing of femtosecond pulses," Opt. Exp. 13, 2153–2159 (2005).

    [148] [148] D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondare ff, I. A. Walmsley, S. Gigan, B. Chatel, "Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium," Nat. Commun. 2, 447 (2011).

    [149] [149] R. Hellwarth, P. Christensen, "Nonlinear optical microscopic examination of structure in polycrystalline ZnSe," Opt. Commun. 12, 318–322 (1974).

    [150] [150] S.-W. Chu, S.-P. Tai, M.-C. Chan, C.-K. Sun, I. C. Hsiao, C.-H. Lin, Y.-C. Chen, B.-L. Lin, "Thickness dependence of optical second harmonic generation in collagen fibrils," Opt. Exp. 15, 12005–12010 (2007).

    [151] [151] I. Freund, M. Deutsch, A. Sprecher, "Connective tissue polarity: Optical second-harmonic microscopy, crossed-beam summation, and small-angle scattering in rat-tail tendon," Biophys. J. 50, 693–712 (1986).

    [152] [152] P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, W. A. Mohler, "Threedimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues," Biophys. J. 82, 493–508 (2002).

    [153] [153] S. J. Lin, C. Y. Hsiao, Y. Sun, W. Lo, W. C. Lin, G. J. Jan, S. H. Jee, C. Y. Dong, "Monitoring the thermally induced structural transitions of collagen by use of second-harmonic generation microscopy," Opt. Lett. 30, 622–624 (2005).

    [154] [154] V. Barzda, C. Greenhalgh, J. Aus der Au, Elmore S, J. van Beek, J. Squier, "Visualization of mitochondria in cardiomyocytes by simultaneous harmonic generation and fluorescence microscopy," Opt. Exp. 13, 8263–8276 (2005).

    [155] [155] G. Mizutani, Y. Sonoda, H. Sano, M. Sakamoto, T. Takahashi, S. Ushioda, "Detection of starch granules in a living plant by optical second harmonic microscopy," J. Luminescence 87–89, 824– 826 (2000).

    [156] [156] G. Cox, N. Moreno, J. Feijó, "Second-harmonic imaging of plant polysaccharides," J. Biomed. Opt. 10, 0240131–0240136 (2005).

    [157] [157] N. Prent, R. Cisek, C. Greenhalgh, R. Sparrow, N. Rohitlall, M. S. Milkereit, C. Green, V. Barzda, "Application of nonlinear icroscopy for studying the structure and dynamics in biological systems," Proc. SPIE Vol. 5971, 597106 (2005).

    [158] [158] L. Moreaux, O. Sandre, M. Blanchard-Desce, J. Mertz, "Membrane imaging by simultaneous second-harmonic generation and two-photon microscopy," Opt. Lett. 25, 320–322 (2000).

    [159] [159] S.-W. Chu, I.-H. Chen, T.-M. Liu, C.-K. Sun, S.-P. Lee, B.-L. Lin, P.-C. Cheng, M.-X. Kuo, D.-J. Lin, H.-L. Liu, "Nonlinear bio-photonic crystal effects revealed with multimodal nonlinear microscopy," J. Microsc. 208, 190–200 (2002).

    [160] [160] T. Y. F. Tsang, "Optical third-harmonic generation at interfaces," Phys. Rev. A 52, 4116–4125 (1995).

    [161] [161] J. A. Squier, M. Muller, G. J. Brakenhoff, K. R. Wilson, "Third harmonic generation microscopy," Opt. Exp. 3, 315–324 (1998).

    [162] [162] D. Oron, E. Tal, Y. Silberberg, "Depth-resolved multiphoton polarization microscopy by third-harmonic generation," Opt. Lett. 28, 2315–2317 (2003).

    [163] [163] D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, Y. Silberberg, "Depth-resolved structural imaging by third-harmonic generation microscopy," J. Struct. Biol. 147, 3–11 (2004).

    [164] [164] V. Shcheslavskiy, G. I. Petrov, S. Saltiel, V. V. Yakovlev, "Quantitative characterization of aqueous solutions probed by the third-harmonic generation microscopy," J. Struct. Biol. 147, 42–49 (2004).

    [165] [165] D. Debarre, N. Olivier, E. Beaurepaire, "Signal epidetection in third-harmonic generation microscopy of turbid media," Opt. Exp. 15, 8913–8924 (2007).

    [166] [166] E. J. Gualda, G. Filippidis, G. Voglis, M. Mari, C. Fotakis, N. Tavernarakis, "In vivo imaging of cellular structures in Caenorhabditis elegans by combined TPEF, SHG and THG microscopy," J. Microsc. 229, 141–150 (2008).

    [167] [167] A. Zumbusch, G. R. Holtom, X. S. Xie, "Three dimensional vibrational imaging by coherent anti- Stokes Raman scattering," Phys. Rev. Lett. 82, 4142–4145 (1999).

    [168] [168] Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York 1984).

    [169] [169] J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, J. G. Fujimoto, "Optical coherence microscopy in scattering media," Opt. Lett. 19, 590–592 (1994).

    [170] [170] J. A. Izatt, M. D. Kulkarni, H.-W. Wang, K. Kobayashi, M. V. Sivak, "Optical Coherence Tomography and Microscopy in Gastrointestinal Tissues," IEEE J. Sel. Topics Quantum Electron. 2, 1017–1028 (1996).

    [171] [171] T. Li, A. Wang, K. Murphy, R. Claus, "Whitelight scanning for michelson interferometer for absolute position-distance measurement," Opt. Lett. 20, 785–787 (1995).

    [172] [172] H. Maruyama, S. Inoue, T. Mitsuyama, M. Ohmi, M. Haruna, "Low-coherence interferometer system for the simultaneous measurement of refractive index and thickness," Appl. Opt. 41, 1315–1322 (2002).

    [173] [173] E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, C. A. Puliafito, "High-speed optical coherence domain reflectometry," Opt. Lett. 17, 151–153 (1992).

    [174] [174] A. G. Podoleanu, G. M. Dobre, D. A. Jackson, "En-face coherence imaging using galvanometer scanner modulation," Opt. Lett. 23, 147–149 (1998).

    [175] [175] G. J. Tearney, B. E. Bouma, S. A. Boppart, B. Golubovic, E. A. Swanson, J. G. Fujimoto, "Rapid acquisition of in vivo biological images by use of optical coherence tomography," Opt. Lett. 21, 1408–1410 (1996).

    [176] [176] A. M. Weiner, J. P. Heritage, E. M. Kirschner, "High-resolution femtosecond pulse shaping," J. Opt. Soc. Am. B 5, 1563–1572 (1988).

    [177] [177] A. M. Rollins, S. Yazdanfar, M. Kulkarni, R. Ung- Arunyawee, J. A. Izatt, "In vivo video rate optical coherence tomography," Opt. Exp. 3, 219–229 (1998).

    [178] [178] G. J. Tearney, B. E. Bouma, J. G. Fujimoto, "High-speed phase- and group-delay scanning with a grating-based phase control delay line," Opt. Lett. 22, 1811–1813 (1997).

    [179] [179] C. J. R. Sheppard, S. S. Kou, C. Depeursinge, "Reconstruction in interferometric synthetic aperture microscopy:Comparison with optical coherence tomography and digital holographic microscopy," J. Opt. Soc. Am. A 29, 244–250 (2012).

    [180] [180] M. Gu, X. Gan, C. J. R. Sheppard, "Threedimensional coherent transfer functions in fibre optical confocal scanning microscopes," J. Opt. Soc. Am. A 8, 1019–1025 (1991).

    [181] [181] M. Villiger, T. Lasser, "Image formation and tomogram reconstruction in optical coherence microscopy," J. Opt. Soc. Am. A 27, 2216–2228 (2010).

    [182] [182] C. J. R. Sheppard, M. Gu, Y. Kawata, S. Kawata, "Three-dimensional transfer functions for highaperture systems," J. Opt. Soc. Am. A 11, 593–598 (1994).

    [183] [183] E. Auksorius, Y. Bromberg, R. Motiejūnait , A. Pieretti, L. Liu, E. Coron, J. Aranda, A. M. Goldstein, B. E. Bouma, A. Kazlauskas, G. J. Tearney, "Dual-modality fluorescence and full-field optical coherence microscopy for biomedical imaging applications," Biomed. Opt. Exp. 3, 661–666 (2012).

    [184] [184] J. M. Schmitt, S. L. Lee, K. M. Yung, "An optical coherence microscope with enhanced resolving power in thick tissue," Opt. Commun. 142, 203–207 (1997).

    [185] [185] F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, A. F. Fercher, "Dynamic coherent focus OCT with depth-independent transversal resolution," J. Mod. Opt. 46, 541–553 (1999).

    [186] [186] B. Qi, A. P. Himmer, L. M. Gordon, X. D. Yang, L. D. Dickensheets, I. A. Vitkin, "Dynamic focus control in highspeed optical coherence tomography based on a microelectromechanical mirror," Opt. Commun. 232, 123–128 (2004).

    [187] [187] A. Divetia, T.-H. Hsieh, J. Zhang, Z. Chen, M. Bachman, G.-P. Li, "Dynamically focused optical coherence tomography for endoscopic applications," Appl. Phys. Lett. 86, 103902 (2005).

    [188] [188] S. Murali, J. Rolland, "Dynamic-focusing microscope objective for optical coherence tomography," International Optical Design Co

    Tools

    Get Citation

    Copy Citation Text

    Nanguang Chen, Shakil Rehman, Colin J. R. Sheppard. Advanced optical microscopy methods for in vivo imaging of sub-cellular structures in thick biological tissues[J]. Journal of Innovative Optical Health Sciences, 2014, 7(5): 1440001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Apr. 30, 2014

    Accepted: Apr. 30, 2014

    Published Online: Jan. 10, 2019

    The Author Email: R. Sheppard Colin J. (colin@nus.edu.sg)

    DOI:10.1142/s179354581440001x

    Topics