Acta Photonica Sinica, Volume. 54, Issue 2, 0254106(2025)

Optical Design of Active and Passive Composite Afocal Imaging System with Coaxial Eccentric-pupil Triple Reflex (Invited)

Li ZHANG1...2, Xuyang LI1,2,*, Hao YUAN1, Zhixian LU1,2, Tongyu XU1,2, and Liguo BIAN12 |Show fewer author(s)
Author Affiliations
  • 1Space Optics Technology Lab, Xi′an Institute of Optics and Precision Mechanics of CAS, Xi′an710119, China
  • 2University of Chinese Academy of Sciences, Beijing 100049,China
  • show less
    Figures & Tables(16)
    Initial structure of the coaxial triple inverse system
    The structure of coaxial eccentric-pupil triple reflex afocal system
    Coaxial eccentric-pupil triple reflex afocal system layout
    Active and passive composite imaging system
    Image quality evaluation diagram of passive imaging system
    Image quality evaluation diagram of active imaging system
    Defocusing curve at room temperature and pressure (±0.09 mm)
    • Table 1. Design parameter

      View table
      View in Article

      Table 1. Design parameter

      ParameterValue
      Wavelength(passive imaging system)/nm450~850
      Optical aperture/mm300
      Pixel size/μm5
      Focal length/mm2 500
      F-number8.33
      Imaging system FOV0.12°×0.12°
      Wavelength(active imaging system)/nm1 550
      Laser emission angle/(°)0.099°×0.033°
      Laser receiving angle/(°)0.058°×0.019°
    • Table 2. Structural parameters of optical system after optimization

      View table
      View in Article

      Table 2. Structural parameters of optical system after optimization

      ElementRadius of curvature/mmThickness/mmCoinc type
      Primary mirror1 018.03420.41-1
      Secondary mirror252.26440.40-3.411
      Ternary mirror285.15475.00-1
    • Table 3. MTF for each field of FOV of passive imaging system in Nyquist frequency

      View table
      View in Article

      Table 3. MTF for each field of FOV of passive imaging system in Nyquist frequency

      FOV/(°)MeridianSagitta
      (0, 0)0.3510.352
      (0, 0.06)0.3480.352
      (0, -0.06)0.3480.352
      (0, 0.03)0.3520.352
      (0, -0.03)0.3520.352
      (0.06, 0)0.3520.348
      (-0.06, 0)0.3520.348
      (0.03, 0)0.3520.352
      (-0.03, 0)0.3520.352
    • Table 4. MTF for each field of fov of active imaging system in Nyquist frequency

      View table
      View in Article

      Table 4. MTF for each field of fov of active imaging system in Nyquist frequency

      FOV/(°)MeridianSagitta
      (0, 0)0.2470.247
      (0, 0.06)0.2440.246
      (0, -0.06)0.2390.245
      (0, 0.03)0.2470.247
      (0, -0.03)0.2440.246
      (0.06, 0)0.2450.242
      (-0.06, 0)0.2450.242
      (0.03, 0)0.2460.246
      (-0.03, 0)0.2460.246
    • Table 5. Camera optics, line expansion coefficient of structural materials, and spacing distance

      View table
      View in Article

      Table 5. Camera optics, line expansion coefficient of structural materials, and spacing distance

      NameGlass or structural materialsCoefficient of expansion (×10-6 mm·℃-1Thickness/mm
      Lens 1H-K78.5-8.00
      Space between lens1 and lens2titanium alloy8.9-2.00
      Lens 2H-FK6113.1-10.00
      Space between lens2 and lens3titanium alloy8.9-2.00
      Lens 3H-BAK28-12.00
      Space between lens3 and lens4titanium alloy8.9-108.18
      Lens 4H-ZPK512.4-12.00
      Space between lens4 and lens5titanium alloy8.9-3.99
      Lens 5H-ZK66.3-12.00
      Space between lens5 and imaging surfacetitanium alloy8.9-67.64
    • Table 6. Effect of uniform temperature field variation on MTF for each field of FOV (all MTF values at Nyquist frequency in the table)

      View table
      View in Article

      Table 6. Effect of uniform temperature field variation on MTF for each field of FOV (all MTF values at Nyquist frequency in the table)

      Temperature/℃(0.00°,0.00°)(0.03°,0.00°)(0.06°,0.00°)

      Thickness variation

      between lens 3~4/mm

      MeridianSagittaMeridianSagittaMeridianSagitta
      15Before focusing0.194 70.198 10.196 50.206 00.202 30.229 50.245
      After focusing0.338 60.338 90.338 70.338 30.338 80.334 2
      16Before focusing0.235 10.238 40.236 90.245 90.242 70.267 40.196
      After focusing0.338 40.338 80.338 50.338 20.338 70.333 9
      17Before focusing0.272 20.275 00.273 80.281 50.279 00.299 00.148
      After focusing0.338 20.338 60.338 40.338 10.338 60.333 7
      18Before focusing0.303 00.305 30.304 40.310 10.308 40.321 60.099
      After focusing0.338 10.338 50.338 20.338 00.338 50.333 4
      19Before focusing0.325 40.326 80.326 20.329 40.328 70.333 30.051
      After focusing0.337 90.338 30.338 00.337 90.338 40.333 1
      21Before focusing0.338 10.337 70.337 60.334 60.335 80.320 9-0.046
      After focusing0.337 40.337 90.337 70.337 70.338 10.332 4
      22Before focusing0.327 60.326 20.326 40.320 20.322 30.298 0-0.095
      After focusing0.337 20.337 70.337 50.337 60.337 90.332 1
      23Before focusing0.306 60.304 50.304 80.295 90.298 50.266 2-0.144
      After focusing0.337 00.337 50.337 30.337 50.337 80.331 7
      24Before focusing0.277 00.274 30.274 60.263 60.266 60.228 3-0.193
      After focusing0.336 80.337 30.337 10.337 40.337 60.331 3
      25Before focusing0.241 10.237 90.238 20.225 80.229 00.187 3-0.242
      After focusing0.336 50.337 10.336 90.337 20.337 40.330 9
    • Table 7. Effect of object distance variation on mtf for each field of fov (all MTF values at Nyquist frequency in the table)

      View table
      View in Article

      Table 7. Effect of object distance variation on mtf for each field of fov (all MTF values at Nyquist frequency in the table)

      Object distance/km

      Thickness variation

      between lens 3~4/mm

      Before focusingAfter focusing

      MTF improvement

      after focusing

      System focal length

      after focusing/mm

      Infinity00.345 10.345 10-2 500
      5-3.1190.003 7040.341 10.337 396-2 510.58
      3.5-2.4950.001 2840.337 10.335 816-2 515.12
      2-8.0430.001 1680.315 20.314 032-2 525.92
      1-16.9810.000 1150.309 1620.309 047-2 557.14
    • Table 8. Tolerance allocation

      View table
      View in Article

      Table 8. Tolerance allocation

      Tolerance typeTolerance value
      Lens thickness and air gap±0.01 mm
      Lens tilt±10″
      Lens decentering±0.01 mm
      Lens local aperture2
      Lens aperture0.2
      Lens refractive index±0.000 5
      Abbe number of lens±0.001
      Curvature radius(Quadric)0.01 mm
      Facial shape(Quadric)0.001
      Conic constant(Quadric)1/50λ
    • Table 9. Monte Carlo analysis results

      View table
      View in Article

      Table 9. Monte Carlo analysis results

      MTF valueRMS of wavefront error
      Monte Carlo90%>0.308 061 9190%>0.008 801 99
      80%>0.314 342 6580%>0.007 717 72
      50%>0.323 677 5350%>0.004 938 53
      20%>0.333 524 0520%>0.003 277 45
      10%>0.337 453 2610%>0.002 141 85
    Tools

    Get Citation

    Copy Citation Text

    Li ZHANG, Xuyang LI, Hao YUAN, Zhixian LU, Tongyu XU, Liguo BIAN. Optical Design of Active and Passive Composite Afocal Imaging System with Coaxial Eccentric-pupil Triple Reflex (Invited)[J]. Acta Photonica Sinica, 2025, 54(2): 0254106

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Special Issue for Precise Beam Pointing for Space Gravitational Wave Detection

    Received: Jul. 3, 2024

    Accepted: Aug. 19, 2024

    Published Online: Mar. 25, 2025

    The Author Email: LI Xuyang (lixuyang2004@126.com)

    DOI:10.3788/gzxb20255402.0254106

    Topics