Journal of Inorganic Materials, Volume. 36, Issue 1, 69(2021)
[1] CHEN X, ZHANG D, ZHANG X et al. Synthesis and growth mechanism of Mn-doped nanodot embedded silica nanowires[D]. Physica B. Condensed Matter, 571, 10-17(2019).
[2] LIU J, WANG P, QU W et al. Nanodiamond-decorated ZnO catalysts with enhanced photocorrosion-resistance for photocatalytic degradation of gaseous toluene[D]. Applied Catalysis B. Environmental, 257, 117880(2019).
[3] PEI L Z, WANG J F, YANG L J et al. Preparation of copper germanate nanowires with good electrochemical sensing properties[D]. Crystal Research and Technology, 46, 103-112(2011).
[4] TAWALE J S, KUMAR A, DHAKATE S R et al. Facile synthesis of bulk SnO2 and ZnO tetrapod based graphene nanocomposites for optical and sensing application[D]. Materials Chemistry and Physics, 201, 372-383(2017).
[5] RAHMAN M A, THOMAS J P, LEUNG K T A. Delaminated defect-rich ZrO2 hierarchical nanowire photocathode for efficient photoelectrochemical hydrogen evolution[D]. Advanced Energy Materials, 8, 1701234(2018).
[6] LIU J, JIANG J, CHENG C et al. Co3O4 nanowire@MnO2 ultrathin nanosheet core/shell arrays: a new class of high-performance pseudocapacitive materials[D]. Advanced Materials, 23, 2076-2081(2011).
[7] HUANG M, CAO J, MENG X et al. Preparation of SiO2 nanowires from rice husks by hydrothermal method and the RNA purification performance[D]. Chemical Physics Letters, 662, 42-46(2016).
[8] YI R, FENG J, LV D et al. Amorphous Zn2GeO4 nanoparticles as anodes with high reversible capacity and long cycling life for Li-ion batteries[D]. Nano Energy, 2, 498-504(2013).
[9] CONG Y, HE Y, DONG B et al. Long afterglow properties of Zn2GeO4:Mn 2+, Cr 3+ phosphor[D]. Optical Materials, 42, 506-510(2015).
[10] JAIME D, PEDRO H, BIANCHI M. Correlative study of vibrational and luminescence properties of Zn2GeO4 microrods[D]. Physica Status Solidi. (a), 215, 1800270(2018).
[11] CHEN F, JU M, GUTSEV G L et al. Structure and luminescence properties of a Nd 3+doped Bi4Ge3O12 scintillation crystal: new insights from a comprehensive study[D]. Journal of Materials Chemistry C, 5, 3079-3087(2017).
[12] RODRIGUEZ J R, BELMAN-RODRIGUEZ C, AGUILA S A et al. Bismuth germanate (Bi4Ge3O12), a promising high-capacity lithium-ion battery anode[D]. Chemical Communications, 54, 11483-11486(2018).
[13] JIA Z, JIANG X, LIN Z et al. PbTeGeO6: polar rosiaite-type germanate featuring a two dimensional layered structure[D]. Dalton Transactions, 47, 16388-16392(2018).
[14] AVALOS C E, WALDER B J, VIGER-GRAVEL J et al. Chemical exchange at the ferroelectric phase transition of lead germanate revealed by solid state (207) Pb nuclear magnetic resonance[D]. Physical Chemistry Chemical Physics. PCCP, 21, 1100-1109(2019).
[15] JAYARAMAN A, WANG S Y, MING L C et al. Pressure-induced intercalation and amorphization in the spin-peierls compound CuGeO3[D]. Physical Review Letters, 75, 2356-2359(1995).
[16] MONGE M A, GUTIERREZ-PUEBLA E, CASCALES C et al. A copper germanate containing potassium in its two-dimensional channel network[D]. Chemistry Material, 12, 1926-1930(2000).
[17] BRADEN M, WILKENDORF G, LORENZANA J et al. Structural analysis of CuGeO3 relation between nuclear structure and magnetic interaction[D]. Physical Review B, 54, 1105-1116(1996).
[18] RUI QI SONG, AN WU XU, YU S H. Layered copper metagermanate nanobelts hydrothermal synthesis[D]. Journal of the American Chemical Society, 129, 4152-4153(2007).
[19] CHEN Z, YAN Y, XIN S et al. Copper germanate nanowire/reduced graphene oxide anode materials for high energy lithium-ion batteries[D]. Journal of Materials Chemistry A, 1, 11404(2013).
[20] WU S, WANG R, WANG Z et al. CuGeO3 nanowires covered with graphene as anode materials of lithium ion batteries with enhanced reversible capacity and cyclic performance[D]. Nanoscale, 6, 8350(2014).
[21] KWON D, CHOI S, WANG G et al. Germanium-based multiphase material as a high-capacity and cycle-stable anode for lithium-ion batteries[D]. RSC Advances, 6, 89176-89180(2016).
[22] LI Z Q, ZHANG L, SONG Y et al. Size-controlled synthesis and magnetic properties of copper germanate nanorods. Observation of size-induced quenching of the spin-Peierls transition[D]. CrystEngComm, 16, 850-857(2014).
[23] PEI L Z, YANG L J, YANG Y et al. Large-scale synthesis and growth conditions dependence on the formation of CuGeO3 nanowires[D]. Materials Chemistry and Physics, 130, 104-112(2011).
[24] PEI L Z, PEI Y Q, YANG Y et al. Dependence of growth conditions on copper germanate nanowires and their electrochemical characteristics[D]. Materials Science-Poland, 29, 241-247(2012).
[25] O'NEAL K R, AL WAHISH A, LI Z et al. Vibronic coupling and band gap trends in CuGeO3 nanorods[D]. Physical Review B, 96, 075437(2017).
[26] FARQUHAR M L, CHARNOCK J M, ENGLAND K E R et al. Adsorption of Cu(II) on the (0001) plane of mica: a REFLEXAFS and XPS study[D]. Journal of Colloid & Interface Science, 177, 561-567(1996).
[27] WANG F, XING Y, SU Z et al. Single-crystalline CuGeO3 nanorods: synthesis, characterization and properties[D]. Materials Research Bulletin, 48, 2654-2660(2013).
[28] WAGNER C D, RIGGS W M, DAVIS L E et al. Handbook of X-ray Photoelectron Spectroscopy.[D]. USA: Perkin-Elmer Corporation, 31-32(1979).
[29] PEI L Z, ZHAO H S, ZHANG Q F et al. Low temperature growth and characterizations of single crystalline CuGeO3 nanowires[D]. CrystEngComm, 11, 1696(2009).
[30] LI Y, LIAO H, DING Y et al. Solvothermal elemental direct reaction to CdE (E=S, Se, Te) semiconductor nanorod[D]. Inorganic Chemistry, 38, 1382-1387(1999).
[31] DENG Z X, WANG C. Structure-directing coordination template effect of ethylenediamine[D]. Inorganic Chemistry, 41, 869-873(2002).
[32] ZHAO X D, LI L, LI Y. Novel inorganic/organic-layered structures: Crystallographic understanding of both phase and morphology formations of one-dimensional CdE (E=S, Se, Te) nanoroods in ethylenediamine[D]. Inorganic Chemistry, 42, 2331-2341(2003).
[33] BISWAS S, KAR S, SANTRA S et al. Solvothermal synthesis of high-aspect ratio alloy semiconductor nanowires Cd1-
[34] LEE G H, SUNG M C, KIM J C et al. Synergistic effect of CuGeO3/graphene composites for efficient oxygen electrode electrocatalysts in Li-O2 batteries[D]. Advanced Energy Materials, 8, 1801930(2018).
[35] O'NEAL K R, AL-WAHISH A, LI Z Q et al. Charge and bonding in CuGeO3 nanorods[D]. Nano Letters, 18, 3428-3434(2018).
[36] YANG Y, CONG Y, ZHU Z M et al. Synthesis and luminescence properties of Zn2GeO4 nanorods.[D]. Chinese Journal of Inorganic Chemistry, 33, 1757-1762(2017).
[37] GRIESSER R, SIGEL H. Ternary complexes in solution. XI. complex formation between the cobalt(ii)-, nickel(ii)-, copper(ii)-, and zinc(II)-2,2′-Bipyridyl 1 : 1 complexes and ethylenediamine, glycinate, or pyrocatecholate1[D]. Inorganic Chemistry, 10, 2229-2232(1971).
Get Citation
Copy Citation Text
Yumin XIAO, Bin Li, Lizhao QIN, Hua LIN, Qing LI, Bin LIAO.
Category: RESEARCH PAPER
Received: Apr. 3, 2020
Accepted: --
Published Online: Jan. 21, 2021
The Author Email: Lizhao QIN (qin8394@swu.edu.cn)