Laser & Optoelectronics Progress, Volume. 61, Issue 6, 0618017(2024)

New Light in Microscopic Exploration: Portable Photoacoustic Microscopy (Invited)

Mingli Sun, Chiye Li, Ruimin Chen, and Junhui Shi*
Author Affiliations
  • Research Center for Humanoid Sensing, Zhejiang Lab, Hangzhou 311121, Zhejiang, China
  • show less
    References(164)

    [1] Wang L V, Hu S. Photoacoustic tomography: in vivo imaging from organelles to organs[J]. Science, 335, 1458-1462(2012).

    [2] Mu G, Zhang Z H, Shi Y J. Photoacoustic imaging technology in biomedical imaging[J]. Chinese Journal of Lasers, 49, 2007208(2022).

    [3] Wang B, Karpiouk A, Yeager D et al. Intravascular photoacoustic imaging of lipid in atherosclerotic plaques in the presence of luminal blood[J]. Optics Letters, 37, 1244-1246(2012).

    [4] Yang J G, Choi S, Kim J et al. Recent advances in deep-learning-enhanced photoacoustic imaging[J]. Advanced Photonics Nexus, 2, 054001(2023).

    [5] Zhang Z H, Chen W, Cui D D et al. Collagen fiber anisotropy characterization by polarized photoacoustic imaging for just-in-time quantitative evaluation of burn severity[J]. Photonics Research, 11, 817-828(2023).

    [6] Maslov K, Zhang H F, Hu S et al. Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries[J]. Optics Letters, 33, 929-931(2008).

    [7] Yao J J, Wang L D, Li C Y et al. Photoimprint photoacoustic microscopy for three-dimensional label-free subdiffraction imaging[J]. Physical Review Letters, 112, 014302(2014).

    [8] Shi J H, Wong T T W, He Y et al. High-resolution, high-contrast mid-infrared imaging of fresh biological samples with ultraviolet-localized photoacoustic microscopy[J]. Nature Photonics, 13, 609-615(2019).

    [9] Yang J M, Gong L, Xu X et al. Motionless volumetric photoacoustic microscopy with spatially invariant resolution[J]. Nature Communications, 8, 780(2017).

    [10] Cao R, Zhao J J, Li L et al. Optical-resolution photoacoustic microscopy with a needle-shaped beam[J]. Nature Photonics, 17, 89-95(2023).

    [11] Zhang X, Li Z L, Nan N et al. Super-resolution reconstruction algorithm for optical-resolution photoacoustic microscopy images based on sparsity and deconvolution[J]. Optics Express, 31, 598-609(2023).

    [12] Lee S Y, Lai Y H, Huang K C et al. In vivo sub-femtoliter resolution photoacoustic microscopy with higher frame rates[J]. Scientific Reports, 5, 15421(2015).

    [13] Wong T T W, Zhang R Y, Hai P F et al. Fast label-free multilayered histology-like imaging of human breast cancer by photoacoustic microscopy[J]. Science Advances, 3, e1602168(2017).

    [14] Li X F, Kot J C K, Tsang V T C et al. Ultraviolet photoacoustic microscopy with tissue clearing for high-contrast histological imaging[J]. Photoacoustics, 25, 100313(2022).

    [15] Cao R, Nelson S D, Davis S et al. Label-free intraoperative histology of bone tissue via deep-learning-assisted ultraviolet photoacoustic microscopy[J]. Nature Biomedical Engineering, 7, 124-134(2023).

    [16] Wang Z Y, Yang F, Cheng Z W et al. Photoacoustic-guided photothermal therapy by mapping of tumor microvasculature and nanoparticle[J]. Nanophotonics, 10, 3359-3368(2021).

    [17] Staley J, Grogan P, Samadi A K et al. Growth of melanoma brain tumors monitored by photoacoustic microscopy[J]. Journal of Biomedical Optics, 15, 040510(2010).

    [18] Sun T, Huang G J, Zhang Z H. Characteristics analysis of micro-vessels liver cancer based on high resolution photoacoustic microscopy[J]. Chinese Journal of Lasers, 50, 1507105(2023).

    [19] Liu C, Chen J B, Zhang Y C et al. Five-wavelength optical-resolution photoacoustic microscopy of blood and lymphatic vessels[J]. Advanced Photonics, 3, 016002(2021).

    [20] Xu Z Q, Pan Y H, Chen N B et al. Visualizing tumor angiogenesis and boundary with polygon-scanning multiscale photoacoustic microscopy[J]. Photoacoustics, 26, 100342(2022).

    [21] Chang K W, Zhu Y H, Hudson H M et al. Photoacoustic imaging of squirrel monkey cortical and subcortical brain regions during peripheral electrical stimulation[J]. Photoacoustics, 25, 100326(2022).

    [22] Liao L D, Li M L, Lai H Y et al. Imaging brain hemodynamic changes during rat forepaw electrical stimulation using functional photoacoustic microscopy[J]. NeuroImage, 52, 562-570(2010).

    [23] He Y, Shi J H, Maslov K I et al. Wave of single-impulse-stimulated fast initial dip in single vessels of mouse brains imaged by high-speed functional photoacoustic microscopy[J]. Journal of Biomedical Optics, 25, 066501(2020).

    [24] Jeon S, Song H B, Kim J et al. In vivo photoacoustic imaging of anterior ocular vasculature: a random sample consensus approach[J]. Scientific Reports, 7, 4318(2017).

    [25] Zhang W, Li Y X, Nguyen V P et al. Ultralow energy photoacoustic microscopy for ocular imaging in vivo[J]. Journal of Biomedical Optics, 25, 066003(2020).

    [26] Zhao H X, Li K, Yang F et al. Customized anterior segment photoacoustic imaging for ophthalmic burn evaluation in vivo[J]. Opto-Electronic Advances, 4, 200017(2021).

    [27] Hattori H, Namita T, Kondo K et al. Study for evaluation of skin aging with photoacoustic microscopy[J]. Proceedings of SPIE, 11240, 112400C(2020).

    [28] Favazza C, Jassim O W, Wang L V et al. In vivo photoacoustic microscopy of human skin[J]. Journal of Investigative Dermatology, 130, S145(2010).

    [29] Bell A G. On the production and reproduction of sound by light[J]. American Journal of Science, 20, 305-324(1880).

    [30] Wang L V, Yao J J. A practical guide to photoacoustic tomography in the life sciences[J]. Nature Methods, 13, 627-638(2016).

    [31] Oraevsky A A, Jacques S L, Esenaliev R O et al. Laser-based optoacoustic imaging in biological tissues[J]. Proceedings of SPIE, 2134, 122-128(1994).

    [32] Manwar R, Zafar M, Xu Q Y. Signal and image processing in biomedical photoacoustic imaging: a review[J]. Optics, 2, 1-24(2020).

    [33] Hu S, Maslov K, Wang L V. Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed[J]. Optics Letters, 36, 1134-1136(2011).

    [34] Chen M M, Jiang L M, Cook C et al. High-speed wide-field photoacoustic microscopy using a cylindrically focused transparent high-frequency ultrasound transducer[J]. Photoacoustics, 28, 100417(2022).

    [35] Zhang C, Maslov K, Wang L V. Subwavelength-resolution label-free photoacoustic microscopy of optical absorption in vivo[J]. Optics Letters, 35, 3195-3197(2010).

    [36] Shintate R, Ishii T, Ahn J et al. High-speed optical resolution photoacoustic microscopy with MEMS scanner using a novel and simple distortion correction method[J]. Scientific Reports, 12, 9221(2022).

    [37] Chen Q, Guo H, Jin T et al. Ultracompact high-resolution photoacoustic microscopy[J]. Optics Letters, 43, 1615-1618(2018).

    [38] Yao J, Wang L V. Photoacoustic microscopy[J]. Laser & Photonics Reviews, 7, 758-778(2013).

    [39] Periyasamy V, Das N, Sharma A et al. 1064 nm acoustic resolution photoacoustic microscopy[J]. Journal of Biophotonics, 12, e201800357(2019).

    [40] Fang C, Zou J. Acoustic-resolution photoacoustic microscopy based on an optically transparent focused transducer with a high numerical aperture[J]. Optics Letters, 46, 3280-3283(2021).

    [41] Yao J J, Maslov K I, Zhang Y et al. Label-free oxygen-metabolic photoacoustic microscopy in vivo[J]. Journal of Biomedical Optics, 16, 076003(2011).

    [42] Sun N D, Zheng S Q, Rosin D L et al. Development of a photoacoustic microscopy technique to assess peritubular capillary function and oxygen metabolism in the mouse kidney[J]. Kidney International, 100, 613-620(2021).

    [43] Sun N D, Bruce A C, Ning B et al. Photoacoustic microscopy of vascular adaptation and tissue oxygen metabolism during cutaneous wound healing[J]. Biomedical Optics Express, 13, 2695-2706(2022).

    [44] Fakhoury J W, Lara J B, Manwar R et al. Photoacoustic imaging for cutaneous melanoma assessment: a comprehensive review[J]. Journal of Biomedical Optics, 29, S11518-S11518(2024).

    [45] Cho S W, Phan T T V, Nguyen V T et al. Efficient label-free in vivo photoacoustic imaging of melanoma cells using a condensed NIR-I spectral window[J]. Photoacoustics, 29, 100456(2023).

    [46] Chen H Y, Agrawal S, Dangi A et al. Optical-resolution photoacoustic microscopy using transparent ultrasound transducer[J]. Sensors, 19, 5470(2019).

    [47] Galanzha E I, Shashkov E V, Kelly T et al. In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells[J]. Nature Nanotechnology, 4, 855-860(2009).

    [48] Wang H W, Chai N, Wang P et al. Label-free bond-selective imaging by listening to vibrationally excited molecules[J]. Physical Review Letters, 106, 238106(2011).

    [49] Visscher M, Pleitez M A, van Gaalen K et al. Label-free analytic histology of carotid atherosclerosis by mid-infrared optoacoustic microscopy[J]. Photoacoustics, 26, 100354(2022).

    [50] Jin Y Y, Yin Y G, Li C Y et al. Non-invasive monitoring of human health by photoacoustic spectroscopy[J]. Sensors, 22, 1155(2022).

    [51] Kaysir M R, Song J Q, Rassel S et al. Progress and perspectives of mid-infrared photoacoustic spectroscopy for non-invasive glucose detection[J]. Biosensors, 13, 716(2023).

    [52] Wang X D, Ku G, Wegiel M A et al. Noninvasive photoacoustic angiography of animal brains in vivo with near-infrared light and an optical contrast agent[J]. Optics Letters, 29, 730-732(2004).

    [53] Hugon O, van der Sanden B, Inglebert M et al. Multi-wavelength photo-acoustic microscopy in the frequency domain for simultaneous excitation and detection of dyes[J]. Biomedical Optics Express, 10, 932-943(2019).

    [54] Aoki H, Nojiri M, Mukai R et al. Near-infrared absorbing polymer nano-particle as a sensitive contrast agent for photo-acoustic imaging[J]. Nanoscale, 7, 337-343(2015).

    [55] Nguyen V P, Li Y X, Henry J et al. Gold nanorod enhanced photoacoustic microscopy and optical coherence tomography of choroidal neovascularization[J]. ACS Applied Materials & Interfaces, 13, 40214-40228(2021).

    [56] Razansky D, Distel M, Vinegoni C et al. Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo[J]. Nature Photonics, 3, 412-417(2009).

    [57] Ning B, Sun N D, Cao R et al. Ultrasound-aided multi-parametric photoacoustic microscopy of the mouse brain[J]. Scientific Reports, 5, 18775(2015).

    [58] Strohm E M, Berndl E S L, Kolios M C. High frequency label-free photoacoustic microscopy of single cells[J]. Photoacoustics, 1, 49-53(2013).

    [59] Wang L D, Zhang C, Wang L V. Grueneisen relaxation photoacoustic microscopy[J]. Physical Review Letters, 113, 174301(2014).

    [60] Yao J J, Wang L D, Yang J M et al. High-speed label-free functional photoacoustic microscopy of mouse brain in action[J]. Nature Methods, 12, 407-410(2015).

    [61] Yao D K, Maslov K, Shung K K et al. In vivo label-free photoacoustic microscopy of cell nuclei by excitation of DNA and RNA[J]. Optics Letters, 35, 4139-4141(2010).

    [62] Ye S Q, Yang R, Xiong J W et al. Label-free imaging of zebrafish larvae in vivo by photoacoustic microscopy[J]. Biomedical Optics Express, 3, 360-365(2012).

    [63] Chen Q, Jin T, Qi W Z et al. Label-free photoacoustic imaging of the cardio-cerebrovascular development in the embryonic zebrafish[J]. Biomedical Optics Express, 8, 2359-2367(2017).

    [64] Maslov K, Zhang H F, Wang L V. Portable real-time photoacoustic microscopy[J]. Proceedings of SPIE, 6437, 643727(2007).

    [65] Zhou Y, Xing W X, Maslov K I et al. Handheld photoacoustic microscopy to detect melanoma depth in vivo[J]. Optics Letters, 39, 4731-4734(2014).

    [66] Zeng L M, Liu G D, Yang D W et al. Portable optical-resolution photoacoustic microscopy with a pulsed laser diode excitation[J]. Applied Physics Letters, 102, 053704(2013).

    [67] Wang L D, Maslov K, Yao J J et al. Fast voice-coil scanning optical-resolution photoacoustic microscopy[J]. Optics Letters, 36, 139-141(2011).

    [68] Wang L D, Maslov K, Xing W X et al. Video-rate functional photoacoustic microscopy at depths[J]. Journal of Biomedical Optics, 17, 106007(2012).

    [69] Wang L D, Maslov K, Wang L V. Single-cell label-free photoacoustic flowoxigraphy in vivo[J]. Proceedings of the National Academy of Sciences of the United States of America, 110, 5759-5764(2013).

    [70] Hajireza P, Shi W, Zemp R J. Real-time handheld optical-resolution photoacoustic microscopy[J]. Optics Express, 19, 20097-20102(2011).

    [71] Zhang W Y, Ma H G, Cheng Z W et al. Miniaturized photoacoustic probe for in vivo imaging of subcutaneous microvessels within human skin[J]. Quantitative Imaging in Medicine and Surgery, 9, 807-814(2019).

    [72] Seong D, Han S, Lee J et al. Waterproof galvanometer scanner-based handheld photoacoustic microscopy probe for wide-field vasculature imaging in vivo[J]. Photonics for Solar Energy Systems IX, 8, 305(2021).

    [73] Jin T, Guo H, Jiang H B et al. Portable optical resolution photoacoustic microscopy (pORPAM) for human oral imaging[J]. Optics Letters, 42, 4434-4437(2017).

    [74] Jin T, Guo H, Yao L et al. Portable optical-resolution photoacoustic microscopy for volumetric imaging of multiscale organisms[J]. Journal of Biophotonics, 11, e201700250(2018).

    [75] Jin T, Qi W Z, Liang X et al. Photoacoustic imaging of brain functions: wide filed-of-view functional imaging with high spatiotemporal resolution[J]. Laser & Photonics Reviews, 16, 2100304(2022).

    [76] Qin W, Gan Q, Yang L et al. High-resolution in vivo imaging of rhesus cerebral cortex with ultrafast portable photoacoustic microscopy[J]. NeuroImage, 238, 118260(2021).

    [77] Chen J B, Zhang Y C, Zhu J Y et al. Freehand scanning photoacoustic microscopy with simultaneous localization and mapping[J]. Photoacoustics, 28, 100411(2022).

    [78] Lin L, Zhang P F, Xu S et al. Handheld optical-resolution photoacoustic microscopy[J]. Journal of Biomedical Optics, 22, 041002(2017).

    [79] Park K, Kim J Y, Lee C et al. Handheld photoacoustic microscopy probe[J]. Scientific Reports, 7, 13359(2017).

    [80] Qi W Z, Chen Q, Guo H et al. Miniaturized optical resolution photoacoustic microscope based on a microelectro mechanical systems scanning mirror[J]. Micromachines, 9, 288(2018).

    [81] Guo H, Chen Q, Qi W Z et al. In vivo study of rat cortical hemodynamics using a stereotaxic-apparatus-compatible photoacoustic microscope[J]. Journal of Biophotonics, 11, e201800067(2018).

    [82] Zhang W Y, Ma H G, Cheng Z W et al. High-speed dual-view photoacoustic imaging pen[J]. Optics Letters, 45, 1599-1602(2020).

    [83] Kim J, Kim J Y, Jeon S et al. Super-resolution localization photoacoustic microscopy using intrinsic red blood cells as contrast absorbers[J]. Light: Science & Applications, 8, 103(2019).

    [84] Kim J Y, Lee C, Park K et al. High-speed and high-SNR photoacoustic microscopy based on a galvanometer mirror in non-conducting liquid[J]. Scientific Reports, 6, 34803(2016).

    [85] Qin W, Jin T, Guo H et al. Large-field-of-view optical resolution photoacoustic microscopy[J]. Optics Express, 26, 4271-4278(2018).

    [86] Lee J, Han S, Seong D et al. Fully waterproof two-axis galvanometer scanner for enhanced wide-field optical-resolution photoacoustic microscopy[J]. Optics Letters, 45, 865-868(2020).

    [87] Zhong F H, Hu S. Thin-film optical-acoustic combiner enables high-speed wide-field multi-parametric photoacoustic microscopy in reflection mode[J]. Optics Letters, 48, 195-198(2023).

    [88] Qi W Z, Liang X, Ji Y Y et al. Optical resolution photoacoustic computed microscopy[J]. Optics Letters, 46, 372-375(2021).

    [89] Li L Y, Qin W, Li T T et al. High-speed adaptive photoacoustic microscopy[J]. Photonics Research, 11, 2084-2092(2023).

    [90] Yao J J, Wang L D, Yang J M et al. Wide-field fast-scanning photoacoustic microscopy based on a water-immersible MEMS scanning mirror[J]. Journal of Biomedical Optics, 17, 080505(2012).

    [91] Kim J Y, Lee C, Park K et al. Fast optical-resolution photoacoustic microscopy using a 2-axis water-proofing MEMS scanner[J]. Scientific Reports, 5, 7932(2015).

    [92] Zhang C, Zhao H X, Xu S et al. Multiscale high-speed photoacoustic microscopy based on free-space light transmission and a MEMS scanning mirror[J]. Optics Letters, 45, 4312-4315(2020).

    [93] Lee C, Kim J Y, Kim C. Recent progress on photoacoustic imaging enhanced with microelectromechanical systems (MEMS) technologies[J]. Micromachines, 9, 584(2018).

    [94] Ahn J, Kim J Y, Choi W et al. High-resolution functional photoacoustic monitoring of vascular dynamics in human fingers[J]. Photoacoustics, 23, 100282(2021).

    [95] Wang Y, Zhang R, Chen Q et al. Visualization of blood-brain barrier disruption with dual-wavelength high-resolution photoacoustic microscopy[J]. Biomedical Optics Express, 13, 1537-1550(2022).

    [96] Yao J J, Xia J, Maslov K I et al. Noninvasive photoacoustic computed tomography of mouse brain metabolism in vivo[J]. NeuroImage, 64, 257-266(2013).

    [97] Na S, Wang L V. Photoacoustic computed tomography for functional human brain imaging[J]. Biomedical Optics Express, 12, 4056-4083(2021).

    [98] Yang X, Chen Y H, Xia F et al. Photoacoustic imaging for monitoring of stroke diseases: a review[J]. Photoacoustics, 23, 100287(2021).

    [99] Yao J J, Kaberniuk A A, Li L et al. Multiscale photoacoustic tomography using reversibly switchable bacterial phytochrome as a near-infrared photochromic probe[J]. Nature Methods, 13, 67-73(2016).

    [100] Meimani N, Abani N, Gelovani J et al. A numerical analysis of a semi-dry coupling configuration in photoacoustic computed tomography for infant brain imaging[J]. Photoacoustics, 7, 27-35(2017).

    [101] Tang J B, Coleman J E, Dai X J et al. Wearable 3-D photoacoustic tomography for functional brain imaging in behaving rats[J]. Scientific Reports, 6, 25470(2016).

    [102] Na S, Russin J J, Lin L et al. Massively parallel functional photoacoustic computed tomography of the human brain[J]. Nature Biomedical Engineering, 6, 584-592(2022).

    [103] Cao R, Li J, Ning B et al. Functional and oxygen-metabolic photoacoustic microscopy of the awake mouse brain[J]. NeuroImage, 150, 77-87(2017).

    [104] Cao R, Li J, Zhang C C et al. Photoacoustic microscopy of obesity-induced cerebrovascular alterations[J]. NeuroImage, 188, 369-379(2019).

    [105] Govinahallisathyanarayana S, Ning B, Cao R et al. Dictionary learning-based reverberation removal enables depth-resolved photoacoustic microscopy of cortical microvasculature in the mouse brain[J]. Scientific Reports, 8, 985(2018).

    [106] Sciortino V M, Tran A, Sun N D et al. Longitudinal cortex-wide monitoring of cerebral hemodynamics and oxygen metabolism in awake mice using multi-parametric photoacoustic microscopy[J]. Journal of Cerebral Blood Flow and Metabolism, 41, 3187-3199(2021).

    [107] Xi L, Jin T, Zhou J L et al. Hybrid photoacoustic and electrophysiological recording of neurovascular communications in freely-moving rats[J]. NeuroImage, 161, 232-240(2017).

    [108] Chen Q, Xie H K, Xi L. Wearable optical resolution photoacoustic microscopy[J]. Journal of Biophotonics, 12, e201900066(2019).

    [109] Dangi A, Agrawal S, Datta G R et al. Towards a low-cost and portable photoacoustic microscope for point-of-care and wearable applications[J]. IEEE Sensors Journal, 20, 6881-6888(2020).

    [110] Guo H, Chen Q, Qin W et al. Detachable head-mounted photoacoustic microscope in freely moving mice[J]. Optics Letters, 46, 6055-6058(2021).

    [111] Nguyen V P, Fan W, Zhu T Y et al. Multimodal photoacoustic microscopy, optical coherence tomography, and fluorescence in vivo tracking of stem cells[C](2022).

    [112] Song W, Wei Q, Liu W Z et al. A combined method to quantify the retinal metabolic rate of oxygen using photoacoustic ophthalmoscopy and optical coherence tomography[J]. Scientific Reports, 4, 6525(2014).

    [113] Zhang W, Li Y X, Nguyen V P et al. High-resolution, in vivo multimodal photoacoustic microscopy, optical coherence tomography, and fluorescence microscopy imaging of rabbit retinal neovascularization[J]. Light: Science & Applications, 7, 103(2018).

    [114] Li Y X, Zhang W, Nguyen V P et al. Real-time OCT guidance and multimodal imaging monitoring of subretinal injection induced choroidal neovascularization in rabbit eyes[J]. Experimental Eye Research, 186, 107714(2019).

    [115] Li L, Rao B, Maslov K et al. Fast-scanning reflection-mode integrated photoacoustic and optical-coherence microscopy[J]. Proceedings of SPIE, 7564, 75641Z(2010).

    [116] Liu M Y, Chen Z, Zabihian B et al. Combined multi-modal photoacoustic tomography, optical coherence tomography (OCT) and OCT angiography system with an articulated probe for in vivo human skin structure and vasculature imaging[J]. Biomedical Optics Express, 7, 3390-3402(2016).

    [117] Dadkhah A, Jiao S L. Integrating photoacoustic microscopy with other imaging technologies for multimodal imaging[J]. Experimental Biology and Medicine, 246, 771-777(2021).

    [118] Kukk A F, Wu D, Gaffal E et al. Multimodal imaging system with ultrasound, photoacoustics, and optical coherence tomography for optical biopsy of melanoma[J]. Proceedings of SPIE, 12371, 1237107(2023).

    [119] Dadkhah A, Jiao S. Integrating photoacoustic microscopy, optical coherence tomography, OCT angiography, and fluorescence microscopy for multimodal imaging[J]. Experimental Biology and Medicine, 245, 342-347(2020).

    [120] Liu C B, Liao J L, Chen L C et al. The integrated high-resolution reflection-mode photoacoustic and fluorescence confocal microscopy[J]. Photoacoustics, 14, 12-18(2019).

    [121] Zhou J S, Wang W, Jing L L et al. Dual-modal imaging with non-contact photoacoustic microscopy and fluorescence microscopy[J]. Optics Letters, 46, 997-1000(2021).

    [122] Zhang W, Li Y X, Yu Y X et al. Simultaneous photoacoustic microscopy, spectral-domain optical coherence tomography, and fluorescein microscopy multi-modality retinal imaging[J]. Photoacoustics, 20, 100194(2020).

    [123] Chen S L, Xie Z X, Guo L J et al. A fiber-optic system for dual-modality photoacoustic microscopy and confocal fluorescence microscopy using miniature components[J]. Photoacoustics, 1, 30-35(2013).

    [124] Huang D, Swanson E A, Lin C P et al. Optical coherence tomography[J]. Science, 254, 1178-1181(1991).

    [125] de Boer J F, Leitgeb R, Wojtkowski M. Twenty-five years of optical coherence tomography: the paradigm shift in sensitivity and speed provided by Fourier domain OCT[J]. Biomedical Optics Express, 8, 3248-3280(2017).

    [126] Psomadakis C E, Marghoob N, Bleicher B et al. Optical coherence tomography[J]. Clinics in Dermatology, 39, 624-634(2021).

    [127] Li L, Maslov K, Ku G et al. Three-dimensional combined photoacoustic and optical coherence microscopy for in vivo microcirculation studies[J]. Optics Express, 17, 16450-16455(2009).

    [128] Jiao S L, Xie Z X, Zhang H F et al. Simultaneous multimodal imaging with integrated photoacoustic microscopy and optical coherence tomography[J]. Optics Letters, 34, 2961-2963(2009).

    [129] Liu T, Wei Q, Wang J et al. Combined photoacoustic microscopy and optical coherence tomography can measure metabolic rate of oxygen[J]. Biomedical Optics Express, 2, 1359-1365(2011).

    [130] Zhu X Y, Huang Z Y, Li Z Y et al. Resolution-matched reflection mode photoacoustic microscopy and optical coherence tomography dual modality system[J]. Photoacoustics, 19, 100188(2020).

    [131] Haindl R, Deloria A J, Sturtzel C et al. Functional optical coherence tomography and photoacoustic microscopy imaging for zebrafish larvae[J]. Biomedical Optics Express, 11, 2137-2151(2020).

    [132] Xi L, Duan C, Xie H K et al. Miniature probe combining optical-resolution photoacoustic microscopy and optical coherence tomography for in vivo microcirculation study[J]. Applied Optics, 52, 1928-1931(2013).

    [133] Qin W, Qi W Z, Jin T et al. In vivo oral imaging with integrated portable photoacoustic microscopy and optical coherence tomography[J]. Applied Physics Letters, 111, 263704(2017).

    [134] Qin W, Chen Q, Xi L. A handheld microscope integrating photoacoustic microscopy and optical coherence tomography[J]. Biomedical Optics Express, 9, 2205-2213(2018).

    [135] Bai X S, Gong X J, Hau W et al. Intravascular optical-resolution photoacoustic tomography with a 1.1 mm diameter catheter[J]. PLoS One, 9, e92463(2014).

    [136] Gerling M, Zhao Y, Nania S et al. Real-time assessment of tissue hypoxia in vivo with combined photoacoustics and high-frequency ultrasound[J]. Theranostics, 4, 604-613(2014).

    [137] Subochev P, Orlova A, Shirmanova M et al. Simultaneous photoacoustic and optically mediated ultrasound microscopy: an in vivo study[J]. Biomedical Optics Express, 6, 631-638(2015).

    [138] Daoudi K, Kersten B E, van den Ende C H M et al. Photoacoustic and high-frequency ultrasound imaging of systemic sclerosis patients[J]. Arthritis Research & Therapy, 23, 22(2021).

    [139] Daoudi K, van den Berg P J, Rabot O et al. Handheld probe integrating laser diode and ultrasound transducer array for ultrasound/photoacoustic dual modality imaging[J]. Optics Express, 22, 26365-26374(2014).

    [140] Yang Y, Li X, Wang T H et al. Integrated optical coherence tomography, ultrasound and photoacoustic imaging for ovarian tissue characterization[J]. Biomedical Optics Express, 2, 2551-2561(2011).

    [141] Li Y, Lu G X, Zhou Q F et al. Advances in endoscopic photoacoustic imaging[J]. Photonics, 8, 281(2021).

    [142] Park J, Park B, Kim T Y et al. Quadruple ultrasound, photoacoustic, optical coherence, and fluorescence fusion imaging with a transparent ultrasound transducer[J]. Proceedings of the National Academy of Sciences of the United States of America, 118, e1920879118(2021).

    [143] Wan Y Y, Lei P, Xiong K D et al. Intravascular photoacoustic, ultrasonic, optical coherence tomography, and photoacoustic elastic multimodal imaging method and system[J]. Chinese Journal of Lasers, 50, 0307107(2023).

    [144] Dai X J, Xi L, Duan C et al. Miniature probe integrating optical-resolution photoacoustic microscopy, optical coherence tomography, and ultrasound imaging: proof-of-concept[J]. Optics Letters, 40, 2921-2924(2015).

    [145] Dai X J, Yang H, Shan T Q et al. Miniature endoscope for multimodal imaging[J]. ACS Photonics, 4, 174-180(2017).

    [146] Leng J, Zhang J K, Li C G et al. Multi-spectral intravascular photoacoustic/ultrasound/optical coherence tomography tri-modality system with a fully-integrated 0.9-mm full field-of-view catheter for plaque vulnerability imaging[J]. Biomedical Optics Express, 12, 1934-1946(2021).

    [147] Huang B X, Wong T T W. Review of low-cost light sources and miniaturized designs in photoacoustic microscopy[J]. Journal of Biomedical Optics, 29, S11503(2024).

    [148] Chen S L, Xie Z X, Ling T et al. Miniaturized all-optical photoacoustic microscopy based on microelectromechanical systems mirror scanning[J]. Optics Letters, 37, 4263-4265(2012).

    [149] Guo Z D, Li G Y, Chen S L. Miniature probe for all-optical double gradient-index lenses photoacoustic microscopy[J]. Journal of Biophotonics, 11, e201800147(2018).

    [150] Guo Z D, Li Y, Chen S L. Miniature probe for in vivo optical- and acoustic-resolution photoacoustic microscopy[J]. Optics Letters, 43, 1119-1122(2018).

    [151] Chen Q, Qin W, Qi W Z et al. Progress of clinical translation of handheld and semi-handheld photoacoustic imaging[J]. Photoacoustics, 22, 100264(2021).

    [152] Wang K Y, Li C Y, Chen R M et al. Recent advances in high-speed photoacoustic microscopy[J]. Photoacoustics, 24, 100294(2021).

    [153] Chen X X, Qi W Z, Xi L. Deep-learning-based motion-correction algorithm in optical resolution photoacoustic microscopy[J]. Visual Computing for Industry, Biomedicine, and Art, 2, 12(2019).

    [154] Zhao H X, Ke Z W, Yang F et al. Deep learning enables superior photoacoustic imaging at ultralow laser dosages[J]. Advanced Science, 8, 2003097(2020).

    [155] Gao Y, Xu W Y, Chen Y M et al. Deep learning-based photoacoustic imaging of vascular network through thick porous media[J]. IEEE Transactions on Medical Imaging, 41, 2191-2204(2022).

    [156] Gröhl J, Schellenberg M, Dreher K et al. Deep learning for biomedical photoacoustic imaging: a review[J]. Photoacoustics, 22, 100241(2021).

    [157] Yang C C, Lan H R, Gao F et al. Review of deep learning for photoacoustic imaging[J]. Photoacoustics, 21, 100215(2021).

    [158] Tserevelakis G J, Barmparis G D, Kokosalis N et al. Deep learning-assisted frequency-domain photoacoustic microscopy[J]. Optics Letters, 48, 2720-2723(2023).

    [159] Hosseinaee Z, Le M, Bell K et al. Towards non-contact photoacoustic imaging[J]. Photoacoustics, 20, 100207(2020).

    [160] Wissmeyer G, Pleitez M A, Rosenthal A et al. Looking at sound: optoacoustics with all-optical ultrasound detection[J]. Light: Science & Applications, 7, 53(2018).

    [161] Wang Y, Hu Y X, Peng B Y et al. Complete-noncontact photoacoustic microscopy by detection of initial pressures using a 3 × 3 coupler-based fiber-optic interferometer[J]. Biomedical Optics Express, 11, 505-516(2019).

    [162] Hosseinaee Z, Khalili L, Simmons J A T et al. Label-free, non-contact, in vivo ophthalmic imaging using photoacoustic remote sensing microscopy[J]. Optics Letters, 45, 6254-6257(2020).

    [163] Manwar R, Kratkiewicz K, Avanaki K. Overview of ultrasound detection technologies for photoacoustic imaging[J]. Micromachines, 11, 692(2020).

    [164] Park S, Rim S, Kim Y et al. Noncontact photoacoustic imaging based on optical quadrature detection with a multiport interferometer[J]. Optics Letters, 44, 2590-2593(2019).

    Tools

    Get Citation

    Copy Citation Text

    Mingli Sun, Chiye Li, Ruimin Chen, Junhui Shi. New Light in Microscopic Exploration: Portable Photoacoustic Microscopy (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(6): 0618017

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Microscopy

    Received: Dec. 5, 2023

    Accepted: Jan. 15, 2024

    Published Online: Mar. 22, 2024

    The Author Email: Shi Junhui (junhuishi@outlook.com)

    DOI:10.3788/LOP232623

    Topics