Journal of the Chinese Ceramic Society, Volume. 52, Issue 6, 2068(2024)
Structural Gene Modeling for Mo-Phase and Chemical Stability of Simulated High Level Waste Borosilicate Glass
[1] [1] XU Weidong. China Build Mater Sci Technol, 2022, 31(3): 65-69.
[2] [2] XU Kai. Mater China, 2016, 35(7): 481-488.
[3] [3] QIAN Min, FAN Sijun, XUE Tianfeng, et al. J Chin Ceram Soc, 2021, 49(10): 2251-2265.
[4] [4] TAN S H. Glass-based stabilization/solidification of radioactive waste[M]. Low Carbon Stabilization and Solidification of Hazardous Wastes. Amsterdam: Elsevier, 2022: 433-447.
[5] [5] THORPE C L, NEEWAY J J, PEARCE C I, et al. Forty years of durability assessment of nuclear waste glass by standard methods[J]. NPJ Mater Degrad, 2021, 5: 61.
[6] [6] SHENG Jiawei, LUO Shanggeng, TANG Baolong. J Chin Ceram Soc, 1997, 25(1): 83-88.
[7] [7] Standard Test Methods for Determining Chemical Durability of Nuclear, Hazardous, and Mixed Waste Glasses and Multiphase Glass Ceramics: The Product Consistency Test (PCT): ASTM C1285-14[S]. ASTM International, 2014.
[9] [9] VIENNA J D, KIM D S, HRMA P R. Database and interim glass property models for hanford HLW and LAW glasses [R]. PNNL-14060, Richland, WA: Pacific Northwest National Lab, 2002: 1.1-8.4.
[10] [10] RUSSELL R L, VIENNA J D, BAIRD S M, et al. Hanford low-activity waste glass minor component concentration boundary expansion [R]. PNNL-32826, Richland, WA: Pacific Northwest National Lab, 2022: 1.1-4.9.
[11] [11] SCHWEIGER M J, RILEY B J, CRUM J V, et al. Expanded high-level waste glass property data development: Phase I [R]. PNNL-17950, Richland, WA: Pacific Northwest National Lab, 2011: 1.1-3.24.
[12] [12] GERVASIO V, LONERGAN C, VIENNA J, et al. Enhanced hanford low- activity waste glass property data development: phase 5 and phase 6 [R]. PNNL-34331, Richland, WA: Pacific Northwest National Lab, 2023: 1.1-3.15.
[13] [13] VIENNA J D, FLUEGEL A, KIM D S, et al. Glass property data and models for estimating high-level waste glass volume [R]. PNNL-18501, Richland, WA: Pacific Northwest National Lab, 2009: 38-54.
[14] [14] ZHANG L Y, XU Y C, LI H. “Gene” modeling approach to new glass design[J]. Int J Appl Glass Sci, 2020, 11(2): 294-306.
[15] [15] LIU W X, YAN S S, WANG Y J, et al. Composition-structure- property modeling for Nd3+ doped alkali-phosphate laser glass[J]. Opt Mater, 2020, 102: 109778.
[16] [16] HOU Y C, LI H, ZHANG L Y. Genome-based approach to new Nd: Phosphate glass: Composition-structure-property statistical modeling and validation[J]. J Non Cryst Solids, 2023, 600: 121988.
[17] [17] CHEN Zekun, ZHANG Liyan. J Chin Ceram Soc, 2022, 50(5): 1301-1309.
[18] [18] WANG Changfu, LIU Lijun, ZHANG Shengdong. J Nucl Radiochem, 2019, 41(6): 509-515.
[19] [19] TAN Shengheng, HAND R J. Mater China, 2016, 35(7): 496-503.
[20] [20] MAGNIN M, SCHULLER S, CAURANT D, et al. Phase separation and crystallization in soda-lime borosilicate glass enriched in MoO3 studied by in situ Raman spectroscopy at high temperature[C]//Nuclear fuel cycle for a sustainable future, Montpellier, France, 2008: 1-7.
[21] [21] CAURANT D, MAJéRUS O, FADEL E, et al. Effect of molybdenum on the structure and on the crystallization of SiO2-Na2O-CaO-B2O3 glasses[J]. J Am Ceram Soc, 2007, 90(3): 774-783.
[22] [22] CAURANT D, LOISEAU P, MAJéRUS O, et al. Glasses, Glass-Ceramics and Ceramics for Immobilization of Highy Radioactive Nuclear Wastes[M]. New York: Nova Science, 2009: 317-321.
[23] [23] PINET O, HOLLEBECQUE J F, HUGON I, et al. Glass ceramic for the vitrification of high level waste with a high molybdenum content[J]. J Nucl Mater, 2019, 519: 121-127.
[24] [24] Kissinger R M, Crum J V, Riley B J. Single-component-at-a-time variation study for glass-ceramic waste forms[J]. J Am Ceram Soc, 2021, 104(7): 3738-3749.
[25] [25] KROLL J O, VIENNA J D, SCHWEIGER M J, et al. Results from Phase 1, 2, and 3 studies on nepheline formation in high-level waste glasses containing high concentrations of alumina [R]. PNNL-26057, Richland, WA: Pacific Northwest National Lab, 2016:3.1.
[26] [26] CORNELL J A. Experiments with Mixtures: Designs, Models, and the Analysis of Mixture Data[M]. 3rd ed. New York: Wiley, 2002.
[27] [27] ZHANG Liyan, LI Hong, HU Lili, et al. J Inorg Mater, 2019, 34(8): 885-892.
[28] [28] ACHIGAR S, CAURANT D, RéGNIER E, et al. Dismantling nuclear waste rich in P2O5, MoO3 and ZrO2: How do these oxides incorporate in aluminoborosilicate glasses?[J]. J Nucl Mater, 2021, 544: 152731.
[29] [29] STOLYAR S V, ANFIMOVA I N. A dilatometric study of phase separation in sodium borosilicate glass with phosphorus and fluorine additions[J]. Glass Phys Chem, 2011, 37(3): 290-292.
[30] [30] H??LER J, RüSSEL C. Self-organized growth of sodium borate-rich droplets in a phase-separated sodium borosilicate glass[J]. Int J Appl Glass Sci, 2017, 8(1): 124-131.
[31] [31] MARTINEAU C, MICHAELIS V K, SCHULLER S, et al. Liquid-liquid phase separation in model nuclear waste glasses: A solid-state double-resonance NMR study[J]. Chem Mater, 2010, 22(17): 4896-4903.
[32] [32] KAWAMOTO Y, CLEMENS K, TOMOZAWA M. Effects of MoO3, on phase separation of Na2O-B2O3-SiO2 glasses[J]. J Am Ceram Soc, 1981, 64(5): 292-296.
[33] [33] MYSEN B, FINGER L, VIRGO D, et al. Curve-fitting of raman spectra of silicate glasses[J]. Am Mineral, 1982, 67(7): 686-695.
Get Citation
Copy Citation Text
DAI Chen, LI Hong, ZHANG Liyan, HU Lili, ZHU Xiaoli, PAN Anlian. Structural Gene Modeling for Mo-Phase and Chemical Stability of Simulated High Level Waste Borosilicate Glass[J]. Journal of the Chinese Ceramic Society, 2024, 52(6): 2068
Category:
Received: Dec. 4, 2023
Accepted: --
Published Online: Aug. 26, 2024
The Author Email: Liyan ZHANG (jndxzly@hotmail.com)