Journal of the Chinese Ceramic Society, Volume. 51, Issue 2, 345(2023)

High-Performance and Low-Dimensional Iron Based Materials and Their Prospects for Biomedical Applications

MAO Yu1...2, WANG Jian3, HUANG Xiao3 and GU Ning1 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(68)

    [1] [1] MAO Y, LI Y, GU N. Review: Progress in the preparation of iron based magnetic nanoparticles for biomedical applications[J]. J Harbin Inst Technol (New series), 2019, 26(2): 201293648.

    [2] [2] JEON M, HALBERT M V, STEPHEN Z R, et al. Iron oxide nanoparticles as T-1 contrast agents for magnetic resonance imaging: Fundamentals, challenges, applications, and prospectives[J]. Adv Mater, 2021, 33(23): 1906539.

    [3] [3] KULIKOV O A, ZHARKOV M N, AGEEV V P, et al. Magnetic hyperthermia nanoarchitectonics via iron oxide nanoparticles stabilised by oleic acid: Anti-tumour efficiency and safety evaluation in animals with transplanted carcinoma[J]. Int J Mol Sci, 2022, 23(8): 4234.

    [4] [4] HOOSHMAND S, HAYAT S M G, GHORBANI A, et al. Preparation and applications of superparamagnetic iron oxide nanoparticles in novel drug delivery systems: An overview[J]. Curr Med Chem, 2021, 28(4): 777-799.

    [5] [5] CAI X J, GAO W, ZHANG L L, et al. Enabling prussian blue with tunable localized surface plasmon resonances: Simultaneously enhanced dual-mode imaging and tumor photothermal therapy[J]. Acs Nano, 2016, 10(12): 11115-11126.

    [6] [6] LI J H, ZHANG F S, HU Z G, et al. Drug “Pent-Up” in hollow magnetic prussian blue nanoparticles for NIR-induced chemo-photothermal tumor therapy with trimodal imaging[J]. Adv Healthc Mater, 2017, 6(14): 1700005.

    [7] [7] ZHANG W, HU S L, YIN J J, et al. Prussian blue nanoparticles as multienzyme mimetics and reactive oxygen species scavengers[J]. J Am Chem Soc, 2016, 138(18): 5860-5865.

    [8] [8] ZHANG L, QIN Z G, SUN H, et al. Nanoenzyme engineered neutrophil-derived exosomes attenuate joint injury in advanced rheumatoid arthritis via regulating inflammatory environment[J]. Bioact Mater, 2022, 18(12): 1-14.

    [9] [9] XIE W S, GUO Z H, CAO Z B, et al. Manganese-based magnetic layered double hydroxide nanoparticle: A pH-sensitive and concurrently enhanced T-1/T-2-weighted dual-mode magnetic resonance imaging contrast agent[J]. Acs Biomater Sci Eng, 2019, 5(5): 2555-2562.

    [10] [10] ZHANG N, WANG Y, ZHANG C C, et al. LDH-stabilized ultrasmall iron oxide nanoparticles as a platform for hyaluronidase-promoted MR imaging and chemotherapy of tumors[J]. Theranostics, 2020, 10(6): 2791-2802.

    [11] [11] ZHAO X L, LI Z H, CHEN C, et al. A novel biomimetic hydrogen peroxide biosensor based on Pt flowers-decorated Fe3O4/graphene nanocomposite[J]. Electroanal, 2017, 29(6): 1518-1523.

    [12] [12] LI R Q, ZHENG D W, HAN Z Y, et al. mHealth: A smartphone- controlled, wearable platform for tumour treatment[J]. Mater Today, 2020, 40: 91-100.

    [13] [13] AHN T, KIM J H, YANG H M, et al. Formation pathways of magnetite nanoparticles by coprecipitation method[J]. J Phys Chem C, 2012, 116(10): 6069-6076.

    [14] [14] SHEN L Z, QIAO Y S, GUO Y, et al. Facile co-precipitation synthesis of shape-controlled magnetite nanoparticles[J]. Ceram Int, 2014, 40(1): 1519-1524.

    [15] [15] ROTH H C, SCHWAMINGER S P, SCHINDLER M, et al. Influencing factors in the CO-precipitation process of superparamagnetic iron oxide nano particles: A model based study[J]. J Magn Magn Mater, 2015, 377: 81-89.

    [16] [16] DE FREITAS J C, BRANCO R M, LISBOA I G O, et al. Magnetic nanoparticles obtained by homogeneous coprecipitation sonochemically assisted[J]. Mater Res-Ibero-Am J, 2015, 18(Sl 2): 220-224.

    [17] [17] CHEN B, LI Y, ZHANG X Q, et al. An efficient synthesis of ferumoxytol induced by alternating-current magnetic field[J]. Mater Lett, 2016, 170: 93-96.

    [18] [18] ZAKARIA M B, CHIKYOW T. Recent advances in Prussian blue and Prussian blue analogues: Synthesis and thermal treatments[J]. Coordin Chem Rev, 2017, 352: 328-345.

    [19] [19] CATALA L, MALLAH T. Nanoparticles of Prussian blue analogs and related coordination polymers: From information storage to biomedical applications[J]. Coordin Chem Rev, 2017, 346: 32-61.

    [20] [20] WU W, WU Z H, YU T, et al. Recent progress on magnetic iron oxide nanoparticles: Synthesis, surface functional strategies and biomedical applications[J]. Sci Technol Adv Mater, 2015, 16(2): 023501.

    [21] [21] SCHECK J, WU B H, DRECHSLER M, et al. The molecular mechanism of Iron(III) oxide nucleation[J]. J Phys Chem Lett, 2016, 7(16): 3123?3130.

    [22] [22] BAUMGARTNER J, DEY A, BOMANS P H H, et al. Nucleation and growth of magnetite from solution[J]. Nat Mater, 2013, 12(4): 310-314.

    [23] [23] MAO Y, ZHANG Z H, ZHAN H F, et al. Revealing the crystal phases of primary particles formed during the coprecipitation of iron oxides[J]. Chem Commun, 2022, 58(38): 5749-5752.

    [24] [24] ZHU X Y, ZHANG Z H, MAO Y, et al. Applying deep learning in automatic and rapid measurement of lattice spacings in HRTEM images[J]. Sci China Mater, 2020, 63(11): 2365-2370.

    [25] [25] MAO Y, LI Y, GUO Z H, et al. The coprecipitation formation study of iron oxide nanoparticles with the assist of a gas/liquid mixed phase fluidic reactor[J]. Colloids Surfaces A: Physicochem Eng Aspects, 2022, 647: 129107.

    [26] [26] ZHANG Z H, HE S Y, MAO Y, et al. A force field for molecular dynamics simulations of iron oxide system[J]. Mater Sci Eng: B, 2022, 283: 115803.

    [28] [28] MAO Y, LI Y, ZANG F C, et al. Continuous synthesis of extremely small-sized iron oxide nanoparticles used for T-1-weighted magnetic resonance imaging via a fluidic reactor[J]. Sci China Mater, 2022, 65(6): 1646-1654.

    [29] [29] ZENG J, JING L, HOU Y, et al. Anchoring group effects of surface ligands on magnetic properties of Fe3O4 nanoparticles: towards high performance MRI contrast agents[J]. Adv Mater, 2014, 26(17): 2694-2698, 016.

    [30] [30] CHEN B, GUO Z, GUO C, et al. Moderate cooling coprecipitation for extremely small iron oxide as a pH dependent T1-MRI contrast agent[J]. Nanoscale, 2020, 12(9): 5521-5532.

    [31] [31] YE D W, LI M X, XIE Y Y, et al. Optical imaging and high-accuracy quantification of intracellular iron contents[J]. Small, 2021, 17(2): 2005474.

    [32] [32] WANG H Y, GE Y Q, SUN J F, et al. Magnetic sensor based on image processing for dynamically tracking magnetic moment of single magnetic mesenchymal stem cell[J]. Biosens Bioelectron, 2020, 169: 112593.

    [33] [33] QIN Z G, LI Y, GU N. Progress in applications of Prussian blue nanoparticles in biomedicine[J]. Adv Healthc Mater, 2018, 7(20): 1800347.

    [34] [34] QIN Z G, CHEN B, HUANG X, et al. Magnetic internal heating-induced high performance Prussian blue nanoparticle preparation and excellent catalytic activity[J]. Dalton T, 2019, 48(46): 17169-17173.

    [35] [35] SHOU P, YU Z, WU Y, et al. Zn(2+) doped ultrasmall Prussian blue nanotheranostic agent for breast cancer photothermal therapy under MR imaging guidance[J]. Adv Healthc Mater, 2020, 9(1): e1900948.

    [36] [36] GAUTAM M, POUDEL K, YONG C S, et al. Prussian blue nanoparticles: Synthesis, surface modification, and application in cancer treatment[J]. Int J Pharm, 2018, 549(1/2): 31-49.

    [37] [37] QIN Z G, CHEN B, MAO Y, et al. Achieving ultrasmall Prussian blue nanoparticles as high-performance biomedical agents with multifunctions[J]. Acs Appl Mater Inter, 2020, 12(51): 57382-57390.

    [38] [38] YE D W, LI M X, FENG K Z, et al. Long-term fate tracking and quantitative analyzing of nanoparticles in stem cells with bright-field microscopy[J]. Nano Today, 2022, 44: 101506.

    [39] [39] RISBY T H, SOLGA S F. Current status of clinical breath analysis[J]. Appl Phys B, 2006, 85(2): 421-426.

    [40] [40] ZHANG H, YU L, LI Q, et al. Reduced graphene oxide/α-Fe2O3 hybrid nanocomposites for room temperature NO2 sensing[J]. Sens Actuators B Chem, 2017, 241: 109-115.

    [41] [41] SHEN Z, WU A, CHEN X. Iron oxide nanoparticle based contrast agents for magnetic resonance imaging[J]. Molcular Pharmacetics, 2017, 14(5): 1352-1364.

    [42] [42] CUONG N D, KHIEU D Q, HOA T T, et al. Facile synthesis of α-Fe2O3 nanoparticles for high-performance CO gas sensor[J]. Mater Res Bull, 2015, 68: 302-307.

    [43] [43] BAO J, ZENG S, DAI J, et al. Heterostructures between a tin-based intermetallic compound and a layered semiconductor for gas sensing[J]. Chem Commun, 2021, 57(45): 5590-5593.

    [44] [44] WANG J, FATIMA-EZZAHRA E, DAI J, et al. Ligand-assisted deposition of ultra-small Au nanodots on Fe2O3/reduced graphene oxide for flexible gas sensors[J]. Nanoscale Adv, 2022, 4(5): 1345-1350.

    [45] [45] ULAG S, KALKANDELEN C, BEDIR T, et al. Fabrication of three-dimensional PCL/BiFeO3 scaffolds for biomedical applications[J]. Mater Sci Eng: B, 2020, 261: 114660.

    [46] [46] YI J, LIU L, SHU L, et al. Outstanding ferroelectricity in sol?gel-derived polycrystalline BiFeO3 films within a wide thickness range[J]. ACS Appl Mater Interfaces, 2022, 14(18): 21696-21704.

    [47] [47] LIU C, WANG Y, SUN H, et al. Positive-to-negative subthreshold swing of a MOSFET tuned by the ferroelectric switching dynamics of BiFeO3[J]. NPG Asia Mater, 2021, 13(1): 1-9.

    [48] [48] QI J, LIU H, FENG M, et al. Enhanced hydrogen evolution reaction in Sr doped BiFeO3 by achieving the coexistence of ferroelectricity and ferromagnetism at room temperature[J]. J Energy Chem, 2021, 53: 93-98.

    [49] [49] ZHANG Y, WU M, ZHU Q, et al. Performance enhancement of flexible piezoelectric nanogenerator via doping and rational 3D structure design for self‐powered mechanosensational system[J]. Adv Funct Mater, 2019, 29(42): 1904259.

    [50] [50] LI Q, ZHANG W, WANG C, et al. Ag modified bismuth ferrite nanospheres as a chlorine gas sensor[J]. RSC Adv, 2018, 8(58): 33156-33163.

    [51] [51] WAGHMARE S D, RAUT S D, GHULE B G, et al. Pristine and palladium-doped perovskite bismuth ferrites and their nitrogen dioxide gas sensor studies[J]. J King Saud Univ-Sci, 2020, 32(7): 3125-3130.

    [52] [52] YU Q, ZHANG Y, XU Y. Hierarchical hollow BiFeO3 microcubes with enhanced acetone gas sensing performance[J]. Dalton Trans, 2021, 50(19): 6702-6709.

    [53] [53] LAYEK S, VERMA H C, GARG A. Enhancement in magnetic properties of Ba-doped BiFeO3 ceramics by?mechanical activation[J]. J Alloys Compd, 2015, 651: 294-301.

    [54] [54] KIM J K, KIM S S, KIM W J. Sol-gel synthesis and properties of multiferroic BiFeO3[J]. Mater Lett, 2005, 59: 4006-4009.

    [55] [55] LIU Z, QI Y, LU C. High efficient ultraviolet photocatalytic activity of BiFeO3 nanoparticles synthesized by a chemical coprecipitation process[J]. J Mater Sci: Mater Electron, 2009, 21(4): 380-384.

    [56] [56] HAN S H, KIM K S, KIM H G, et al. Synthesis and characterization of multiferroic BiFeO3 powders fabricated by hydrothermal method[J]. Ceram Int, 2010, 36(4): 1365-1372.

    [57] [57] CESUR S, CAM M E, SAYIN F S, et al. Electrically controlled drug release of donepezil and BiFeO3 magnetic nanoparticle-loaded PVA microbubbles/nanoparticles for the treatment of Alzheimer?s disease[J]. J Drug Delivery Sci Technol, 2022, 67: 102977.

    [58] [58] LI R Q, ZHENG D W, HAN Z Y, et al. mHealth: A smartphone- controlled, wearable platform for tumour treatment[J]. Mater Today, 2020, 40: 91-100.

    [59] [59] LIU P J, YAO Z J, NG V M H, et al. Facile synthesis of ultrasmall Fe3O4 nanoparticles on MXenes for high microwave absorption performance[J]. Compos Part a-Appl S, 2018, 115: 371-382.

    [60] [60] ZOU S, GAO J, LIU L M, et al. Enhanced gas sensing properties at low working temperature of iron molybdate/MXene composite[J]. J Alloy Compd, 2020, 817: 152785.

    [61] [61] LIU Z, ZHAO M L, LIN H, et al. 2D magnetic titanium carbide MXene for cancer theranostics[J]. J Mater Chem B, 2018, 6(21): 3541-3548.

    [62] [62] JANG J, SHAHZAD A, WOO S H, et al. Magnetic Ti3C2Tx (MXene) for diclofenac degradation via the ultraviolet/chlorine advanced oxidation process[J]. Environ Res, 2020, 182: 108990.

    [63] [63] LIU Z, LIN H, ZHAO M L, et al. 2D superparamagnetic tantalum carbide composite MXenes for efficient breast-cancer theranostics[J]. Theranostics, 2018, 8(6): 1648-1664.

    [64] [64] ZHANG H L, LI M, CAO J L, et al. 2D α-Fe2O3 doped Ti3C2 MXene composite with enhanced visible light photocatalytic activity for degradation of Rhodamine B[J]. Ceram Int, 2018, 44(16): 19958-19962.

    [65] [65] MEDETALIBEYOGLU H, KOTAN G, ATAR N, et al. A novel sandwich-type SERS immunosensor for selective and sensitive carcinoembryonic antigen (CEA) detection[J]. Anal Chim Acta, 2020, 1139: 100-110.

    [66] [66] DUAN F H, GUO C P, HU M Y, et al. Construction of the 0D/2D heterojunction of Ti3C2Tx MXene nanosheets and iron phthalocyanine quantum dots for the impedimetric aptasensing of microRNA-155[J]. Sens Actuators B Chem, 2020, 310: 127844.

    [67] [67] IMANI S, BANDODKAR A J, MOHAN A M V, et al. A wearable chemical-electrophysiological hybrid biosensing system for real-time health and fitness monitoring[J]. Nat Commun, 2016, 7(1): 1-7.

    [68] [68] JIA W Z, BANDODKAR A J, VALDES-RAMIREZ G, et al. Electrochemical tattoo biosensors for real-time noninvasive lactate monitoring in human perspiration[J]. Anal Chem, 2013, 85(14): 6553-6560.

    [69] [69] LEI Y J, ZHAO E N, ZHANG Y Z, et al. A MXene-based wearable biosensor system for high-performance in vitro perspiration analysis[J]. Small, 2019, 15(19): 1901190.

    Tools

    Get Citation

    Copy Citation Text

    MAO Yu, WANG Jian, HUANG Xiao, GU Ning. High-Performance and Low-Dimensional Iron Based Materials and Their Prospects for Biomedical Applications[J]. Journal of the Chinese Ceramic Society, 2023, 51(2): 345

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: Jun. 24, 2022

    Accepted: --

    Published Online: Mar. 11, 2023

    The Author Email:

    DOI:10.14062/j.issn.0454-5648.20220511

    Topics