Optics and Precision Engineering, Volume. 25, Issue 5, 1387(2017)
Astronomical image denoising with compressed sensing and curvelet
[1] [1] SHI X P, ZHANG J. Reconstruction and transmission of astronomical image based on compressed sensing [J]. Journal of Systems Engineering and Electronics, 2016, 27(3): 680-690.
[3] [3] DONOHO D L. Compressed sensing [J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
[7] [7] MA J W, PLONKA G. The curvelet transform [J].IEEE Signal Processing, 2010, 27(2): 118-133.
[9] [9] YANG X F, ZHANG J N, TENG SH H. Parametric estimation of scattering center for random stepped frequency based on compressed sensing [J].Infrared and Laster Engineering, 2016, 45(5): 0526004. (in chinese)
[10] [10] WANG P, RONG ZH B, HE J H, et al.. Polarization imaging based on compressed sensing theory [J].Infrared and Laster Engineering, 2016, 45(2): 0228005: 1-6. (in chinese)
[11] [11] BECK A, TEBOULLE M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems [J].SIAM J.Imaging Sci, 2009, 2(1): 183-202.
[12] [12] BLUMENSATH T, DAVIES M E. Iterative hard thresholding for compressed sensing[J].Applied and Computational Harmonic Analysis, 2009, 27(3): 265-274.
[13] [13] BARON F, MONNIER J D. Chara/imrc observations of two M supergiants in Perseus OB1: temperature, Bayesian modeling, and compressed sensing imaging [J].The Astrophysical Journal, 2014, 785(1): 1-11.
[14] [14] DASSIOS I, FOUNTOULAKIS K, GONDZIO J. A preconditioner for a primal-dual newton conjugate gradient method for compressed sensing problems [J]. SIAM J.Sci.comput, 2015, 37(6): A2783-A2812.
[15] [15] LIU E T, TEMLYAKOV V N. The orthogonal super greedy algorithm and applications in compressed sensing [J].IEEE Transactions on Information Theory, 58(4): 2040-2047.
[16] [16] DO M N, VETTERLI M. The contourlet transform: an efficient directional multiresolution image representation [J]. IEEE Transaction on Image Processing, 2005, 14(12): 2091-2106.
[17] [17] MA J W. Compressed sensing by inverse scale space and curvelet thresholding [J].Applied Mathematics and Computation, 2008, 206(2): 980-988.
[18] [18] ESLAHI N, AGHAGOLZAOEH A. Compressive sensing image restoration using adaptive curvelet thresholding and nonlocal sparse regularization [J]. IEEE Transactions on Image Processing, 2016, 25(7): 3216-3140.
[19] [19] SWAMY P M S, VANI K. A novel thresholding technique in the curvelet domain for improved speckle removal in sar images [J].Optik, 2016, 127(2): 634-637.
[21] [21] GUO H T, ZHAO H Y, XU L, et al.. Sonar image filtering method based on cycle shift and DTCWT [J]. Chinese Journal of Scientific Instrument, 2015, 36(6): 1350-1355. (in Chinese)
[22] [22] CANDES J, ROMBERG J, TAO T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information [J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
[23] [23] STARCK J L, CANDES E J, DONOHO D L. The curvelet transform for image denoising [J].IEEE Transactions on Image Processing, 2002, 11(6): 670-685.
[24] [24] CANDES E, DEMANET L, DONOHO D. Fast discrete curvelet transforms [J].Multiscale Model. & Simul, 2006, 5(3): 861-899.
[25] [25] MIHCAK M K, KOZINTSEV I, RAMCHANDRAN K. Low-complexity image denoising based on statistical modeling of wavelet coefficients [J]. IEEE Signal Processing Letters, 1999, 6(12): 300-303.
[26] [26] MA J W, Le DIMET F X. Deblurring from highly incomplete measurements for remote sensing [J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(3): 792-802.
Get Citation
Copy Citation Text
ZHANG Jie, SHI Xiao-ping. Astronomical image denoising with compressed sensing and curvelet[J]. Optics and Precision Engineering, 2017, 25(5): 1387
Category:
Received: Sep. 14, 2016
Accepted: --
Published Online: Jun. 30, 2017
The Author Email: