Journal of the Chinese Ceramic Society, Volume. 50, Issue 1, 55(2022)
High-Temperature Quenching Synthesis and Electrochemical Properties of Na11Sn2PS12 Solid Electrolytes
[1] [1] ZHOU C T, BAG S, THANGADURAI V. Engineering materials for progressive all-solid-state na batteries[J]. Acs Energy Lette, 2018, 3(9):2181–2198.
[2] [2] LIU T F, ZHANG Y P, JIANG Z G, et al. Exploring competitive features of stationary sodium ion batteries for electrochemical energy storage[J]. Energy Environ Sci, 2019, 12(5): 1512–1533.
[3] [3] ZHAO C, LIU L, QI X, et al. Solid-State sodium batteries[J]. Adv Energy Mater, 2018, 8(17): 1703012.
[4] [4] LU Y, LI L, ZHANG Q, et al. Electrolyte and interface engineering for solid-state sodium batteries[J]. Joule, 2018, 2(9): 1747–1770.
[5] [5] WU J, LIU S, HAN F, et al. Lithium/sulfide all-solid-state batteries using sulfide electrolytes[J]. Adv Mater, 2021, 33(6): e2000751.
[9] [9] JIA H, PENG L, YU C., et al. Chalcogenide-based inorganic sodium solid electrolytes[J]. J Mater Chem A, 2021, 9(9): 5134–5148.
[10] [10] PARK K H, BAI Q, KIM D H, et al. Design strategies, practical considerations, and new solution processes of sulfide solid electrolytes for all-solid-state batteries[J]. Adv Energy Mater, 2018, 8(18):1800035.
[11] [11] HAYASHI A, NOI K, SAKUDA A, et al. Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries[J]. Nat Commun, 2012, 3: 856.
[12] [12] CHU I H, KOMPELLA C S, NGUYEN H, et al. Room-temperature all-solid-state rechargeable sodium-ion batteries with a cl-doped Na3PS4 superionic conductor[J]. Sci Rep, 2016, 6: 33733.
[13] [13] SHANG S L, YU Z, WANG Y, et al. Origin of outstanding phase and moisture stability in a Na3P1-xAsxS4 superionic conductor[J]. ACS Appl Mater Interf, 2017, 9(19): 16261–16269.
[14] [14] YU Z, SHANG S L, SEO J H, et al. Exceptionally high ionic conductivity in Na3P0.62As0.38S4 with improved moisture stability for solid-state sodium-ion batteries[J]. Adv Mater, 2017, 29: 1605561.
[15] [15] KRAUSKOPF T, POMPE C, KRAFT M A, et al. Influence of lattice dynamics on Na+ transport in the solid electrolyte Na3PS4-xSex[J]. chem mater, 2017, 29(20): 8859–8869.
[16] [16] WAN H, MWIZERWA J P, QI X, et al. Core-shell Fe1-xS@Na2.9PS3.95Se0.05 nanorods for room temperature all-solid-state sodium batteries with high energy density[J]. ACS Nano, 2018, 12(3):2809–2817.
[17] [17] MOON C K, LEE H J, PARK K H, et al. Vacancy-Driven Na+ superionic conduction in new Ca-Doped Na3PS4 for all-solid-state Na-Ion batteries[J]. Acs Energy Lett, 2018, 3(10): 2504–2512.
[18] [18] BANERJEE A, PARK K H, HEO J W, et al. Na3SbS4 : A solution processable sodium superionic conductor for all-solid-state sodium-ion batteries[J]. Angew Chem Int Ed, 2016, 55(33): 9634–9638.
[19] [19] WANG H, CHEN Y, HOOD Z D, et al. An air-stable Na3SbS4 superionic conductor prepared by a rapid and economic synthetic procedure[J]. Angew Chem Int Ed, 2016, 55(30): 8551–8555.
[20] [20] WAN H L, MWIZERWA J P, HAN F D, et al. Grain-boundaryresistance-less Na3SbS4?xSex solid electrolytes for all-solid-state sodium batteries[J]. Nano Energy, 2019, 66: 104109.
[21] [21] ZHANG L, YANG K, MI J L, et al. Na3PSe4: A novel chalcogenide solid electrolyte with high ionic conductivity[J]. Adv Energy Mater,2015, 5(24): 1501294.
[22] [22] BO S H, WANG Y, KIM J C, et al. Computational and experimental investigations of Na-Ion conduction in cubic Na3PSe4[J]. Chem Mater,2016, 28(1): 252–258.
[23] [23] KAMAYA N, HOMMA K, YAMAKAWA Y, et al. A lithium superionic conductor[J]. Nat Mater, 2011, 10(9): 682–6.
[24] [24] KATO Y, HORI S, SAITO T, et al. High-power all-solid-state batteries using sulfide superionic conductors[J]. Nat Energy, 2016, 1:16030.
[25] [25] BRON P, JOHANSSON S, ZICK K, et al. Li10SnP2S12: an affordable lithium superionic conductor[J]. J Am Chem Soc, 2013, 135(42):15694–15697.
[26] [26] KANDAGAL V S, BHARADWAJ M D, WAGHMARE U V Theoretical prediction of a highly conducting solid electrolyte for sodium batteries: Na10GeP2S12[J]. J Mater Chem A, 2015, 3(24): 12992–12999.
[27] [27] TSUJI F, TANIBATA N, SAKUDA A, et al. Preparation of sodium ion conductive Na10GeP2S12 glass-ceramic electrolytes[J]. Chem Lett,2018, 47(1): 13–15.
[28] [28] RICHARDS W D, TSUJIMURA T, MIARA L J, et al. Design and synthesis of the superionic conductor Na10SnP2S12[J]. Nat Commun,2016, 7: 11009.
[29] [29] ZHANG Z, RAMOS E, LALERE F, et al. Na11Sn2PS12: a new solid state sodium superionic conductor[J]. Energy Environ Sci, 2018,11(1): 87–93.
[30] [30] DUCHARDT M, RUSCHEWITZ U, ADAMS S, et al.Vacancy-controlled Na+ superion conduction in Na11Sn2PS12[J].Angew Chem Int Ed, 2018, 57(5): 1351–1355.
[31] [31] YU Z X, SHANG S L, GAO Y, et al. A quaternary sodium superionic conductor-Na10.8Sn1.9PS11.8[J]. Nano Energy, 2018, 47: 325–330.
[32] [32] HEO J W, BANERJEE A, PARK K H, et al. New Na-Ion solid electrolytes Na4?xSn1?xSbxS4(0.02≤x≤0.33) for all-solid-state Na-Ion batteries[J]. Adv Energy Mater, 2018, 8(11): 1702716.
[33] [33] RAMOS E P, ZHANG Z, ASSOUD A, et al. Correlating ion mobility and single crystal structure in sodium-ion chalcogenide-based solid state fast ion conductors: Na11Sn2PnS12 (Pn = Sb, P)[J]. Chem Mater,2018, 30(21): 7413–7417.
[34] [34] ZHANG Z, ROY P N, LI H, et al. Coupled cation-Anion dynamics enhances cation mobility in room-temperature superionic solid-state electrolytes[J]. J Am Chem Soc, 2019, 141(49): 19360–19372.
[35] [35] KRAFT M A, GRONYCH L M, FAMPRIKIS T, et al. Structure and sodium ion transport in Na11+xSn2+x(Sb1–yPy)1–xS12[J]. Chem Mater,2020, 32(15): 6566–6576.
[36] [36] DUCHARDT M, NEUBERGER S, RUSCHEWITZ U, et al. Superion conductor Na11.1Sn2.1P0.9Se12: lowering the activation barrier of Na+ conduction in quaternary 1–4–5–6 electrolytes[J]. Chem Mater, 2018,30(12): 4134–4139.
[37] [37] RAO R P, ZHANG X, PHUAH K C, et al. Mechanochemical synthesis of fast sodium ion conductor Na11Sn2PSe12 enables first sodium–selenium all-solid-state battery[J]. J Mater Chem A, 2019,7(36): 20790–20798.
[38] [38] YU Z X, SHANG S L, WANG D W, et al. Synthesis and understanding of Na11Sn2PSe12 with enhanced ionic conductivity for all-solid-state Na-ion battery[J]. Energy Storage Mater, 2019, 17:70–77.
[39] [39] WENG W, WAN H L, LIU G Z, et al. Liquid-phase synthesis of nanosized Na11Sn2PS12 solid electrolytes for room temperature all-solid-state sodium batteries[J]. Acs Appl Energy Mater, 2021, 4(2):1467–1473.
[40] [40] SEINO Y, OTA T, TAKADA K, et al. A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries[J]. Energy Environ Sci, 2014, 7(2): 627–631.
[41] [41] KRAUSKOPF T, CULVER S P, ZEIER W G. Local Tetragonal structure of the cubic superionic conductor Na3PS4[J]. Inorg Chem,2018, 57(8): 4739–4744.
[42] [42] TAKEUCHI S, SUZUKI K, HIRAYAMA M, et al. Sodium superionic conduction in tetragonal Na3PS4[J]. J Solid State Chem, 2018, 265:353–358.
[43] [43] KANAZAWA K, YUBUCHI S, HOTEHAMA C, et al.Mechanochemical synthesis and characterization of metastable hexagonal Li4SnS4 solid electrolyte[J]. Inorg Chem, 2018, 57(16):9925–9930.
[44] [44] CHOI Y E, PARK K H, KIM D H, et al. Coatable Li4SnS4 solid electrolytes prepared from aqueous solutions for all-solid-state lithium-ion batteries[J]. ChemSusChem, 2017, 10(12): 2605–2611.
[45] [45] KRAUSKOPF T, MUY S, CULVER S P, et al. Comparing the descriptors for investigating the influence of lattice dynamics on ionic transport using the superionic conductor Na3PS4–xSex[J]. J Am Chem Soc, 2018, 140(43): 14464–14473.
[46] [46] FUCHS T, CULVER S P, TILL P, et al. Defect-mediated conductivity enhancements in Na3–xPn1–xWxS4 (Pn = P, Sb) using aliovalent substitutions[J]. ACS Energy Lett, 2019, 5(1): 146–151.
[47] [47] WAN H L, CAI L T, WENG W, et al. Cobalt-doped pyrite for Na11Sn2SbS11.5Se0.5 electrolyte based all-solid-state sodium battery with enhanced capacity[J]. J Power Sourc, 2020, 449: 227515.
[48] [48] OH K, CHANG D, PARK I, et al. First-principles investigations on sodium superionic conductor Na11Sn2PS12[J]. Chem Mater, 2019,31(16): 6066–6075.
[49] [49] YU S, PARK H, SIEGEL D J. Thermodynamic assessment of coating materials for solid-state Li, Na, and K batteries[J]. ACS Appl Mater Interf, 2019, 11(40): 36607–36615.
[50] [50] TANG H, DENG Z, LIN Z, et al. Probing solid solid interfacial reactions in all-solid-state sodium-ion batteries with first-principles calculations[J]. Chem Mater, 2018, 30(1): 163–173.
[51] [51] HU P, ZHANG Y, CHI X, et al. Stabilizing the interface between sodium metal anode and sulfide-based solid-state electrolyte with an electron-blocking interlayer[J]. ACS Appl Mater Interf, 2019, 11(10):9672–9678.
Get Citation
Copy Citation Text
WENG Wei, WAN Hongli, LIU Gaozhan, SHEN Lin, YAO Xiayin. High-Temperature Quenching Synthesis and Electrochemical Properties of Na11Sn2PS12 Solid Electrolytes[J]. Journal of the Chinese Ceramic Society, 2022, 50(1): 55
Special Issue:
Received: Jul. 12, 2021
Accepted: --
Published Online: Nov. 14, 2022
The Author Email: