Infrared Technology, Volume. 46, Issue 4, 443(2024)

Object Detection in Visible Light and Infrared Images Based on Adaptive Attention Mechanism

Songpu ZHAO*... Liping YANG, Xin ZHAO, Zhiyuan PENG, Dongxing LIANG and Hongjun LIANG |Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    References(24)

    [1] [1] WANG Can, BU Leping. Overview of target detection algorithms based on convolutional neural networks[J]. Naval Electronic Engineering, 2021, 41(9): 161-169.

    [2] [2] HAO Yongping, CAO Zhaorui, BAI Fan, et al Research on infrared visible image fusion and target recognition algorithm based on region of interest mask convolution neural network[J]. Acta PHOTONICA Sinica, 2021, 50 (2): 84-98.

    [3] [3] LIU Qi, WANG Maojun, GAO Qiang, et al Electrical equipment fault detection based on infrared imaging technology[J]. Electric Measurement and Instrumentation, 2019, 56(10): 122-126.

    [4] [4] XIA J, LU Y, TAN L, et al. Intelligent fusion of infrared and visible image data based on convolutional sparse representation and improved pulsecoupled neural network[J]. Computers, Materials and Continua, 2021, 67(1): 613-624.

    [5] [5] WANG Yong, ZHANG Ying, LIAO Ruchao, et al. UAV image fusion method based on visible light, thermal infrared and lidar sensing[J]. Laser Journal, 2020, 41(2): 141-145.

    [6] [6] ZHANG S, LI X, ZHANG X, et al. Infrared and visible image fusion based on saliency detection and two-scale transform decomposition[J]. Infrared Physics & Technology, 2021, 114(3): 103626.

    [7] [7] WANG Chuanyang. Research on Power Equipment Recognition Based on Infrared and Visible Images[D]. Beijing: North China Electric Power University, 2017.

    [8] [8] LI H, WU X J. Infrared and visible image fusion using Latent low-rank representation[J]. Arxiv Preprint Arxiv, 2018: 1804.08992.

    [9] [9] HUI L, WU X J. DenseFuse: A fusion approach to infrared and visible images[J]. IEEE Transactions on Image Processing, 2018, 28(5): 2614-2623.

    [10] [10] TANG Cong, LING Yongshun, YANG Hua, et al. Decision-level fusion tracking of infrared and visible light based on deep learning[J]. Advances in Lasers and Optoelectronics, 2019, 56(7): 209-216.

    [11] [11] MA J, TANG L, XU M, et al. STDFusionNet: an infrared and visible image fusion network based on salient object detection[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-13.

    [12] [12] YANG Xuehe, LIU Huanxi, XIAO Jianli. A review of multimodal biometric feature extraction and correlation evaluation[J]. Chinese Journal of Image and Graphics, 2020, 25(8): 1529-1538.

    [13] [13] WANG Z, XIN Z, HUANG X, et al. Overview of SAR image feature extraction and object recognition[J]. Springer, 2021, 234(4): 69-75.

    [14] [14] WEI Z. A summary of research and application of deep learning[J]. International Core Journal of Engineering, 2019, 5(9): 167-169.

    [15] [15] Bochkovskiy A, WANG C Y, LIAO H. YOLOv4: Optimal speed and accuracy of object detection[J]. Arxiv Preprint Arxiv, 2020: 2004.10934.

    [16] [16] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016: 770-778.

    [17] [17] Howard A, Sandler M, Chen B, et al. Searching for MobileNetV3 [C]//IEEE International Conference on Computer Vision (ICCV), 2020: 1314-1324.

    [18] [18] CHEN H, WANG Y, XU C, et al. AdderNet: Do we really need multiplications in deep learning?[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2020: 1465-1474.

    [19] [19] SONG Penghan, XIN Huaisheng, LIU Nannan. Multi-source feature fusion recognition of marine ship targets based on deep learning[J]. Journal of the Chinese Academy of Electronic Sciences, 2021, 16(2): 127-133.

    [20] [20] Hassan E. Multiple object tracking using feature fusion in hierarchical LSTMs[J]. The Journal of Engineering, 2020(10): 893-899.

    [21] [21] LIN T Y, Dollar P, Girshick R, et al. Feature pyramid networks for object detection[C]// IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017: 936-944.

    [22] [22] LIU S, HUANG D, WANG Y. Learning spatial fusion for single-shot object detection[J]. Arxiv Preprint Arxiv, 2019: 1911.09516v1.

    [23] [23] LI C, ZHAO N, LU Y, et al. Weighted sparse representation regularized graph learning for RGB-T object tracking[C]// Acm on Multimedia Conference, ACM, 2017: 1856-1864.

    [24] [24] XIAO X, WANG B, MIAO L, et al. Infrared and visible image object detection via focused feature enhancement and cascaded semantic extension[J]. Remote Sensing, 2021, 13(13): 2538.

    Tools

    Get Citation

    Copy Citation Text

    ZHAO Songpu, YANG Liping, ZHAO Xin, PENG Zhiyuan, LIANG Dongxing, LIANG Hongjun. Object Detection in Visible Light and Infrared Images Based on Adaptive Attention Mechanism[J]. Infrared Technology, 2024, 46(4): 443

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 30, 2022

    Accepted: --

    Published Online: Sep. 2, 2024

    The Author Email: Songpu ZHAO (1419446206@qq.com)

    DOI:

    CSTR:32186.14.

    Topics