Acta Photonica Sinica, Volume. 40, Issue 11, 1607(2011)
Progress and Applications of Highresolution and Superresolution Optical Imaging in Space and Biology
[2] [2] RICHARDS B, WOLF E. Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system[C]. Proceedings of the Royal Society A, 1959, 253: 358379.
[3] [3] DORN R, QUABIS S, LEUCHS G. Sharper focus for a radially polarized light beam[J]. Physical Review Letters, 2003, 91(23): 3901.
[4] [4] ZHAO Baochang, YANG Jianfeng, WEN Desheng, et al. Overall scheme and onorbit images of Chang′e2 lunar satellite CCD stereo camera[J]. Science China: Technological Sciences, 2011, 54(9): 22372242.
[5] [5] XUE Bin, ZHAO Baochang, YANG JianFeng, et al. Autocompensation of velocityheight ratio for Chang′e2 satellite CCD stereo camera[J]. Science China: Technological Sciences, 2011, 54(9): 22432246.
[7] [7] LATRY C, ROUGE B. Optimized sampling for CCD instruments: the supermode scheme[C]. IEEE Proceedings IGARSS, 2000, 4: 23222324 .
[8] [8] DOWSKI E R Jr, CATHEY W T. Extended depth of field through wavefront coding[J]. Applied Optics, 1995, 34(11): 18591866.
[9] [9] LEE S H, PARK N C, PARK K S, et al. Upscaling image resolution of compact imaging systems using wavefront coding and a property of the pointspread function[J]. JOSA A, 2010, 27(10): 23042312.
[10] [10] QIAO Yanfeng, LIU Kun, DUAN Xiangyong. Optical synthetic aperture imaging techniques and development[J]. Chinese Journal of Optics and Applied Optics, 2009, 2(3): 175182.
[11] [11] LIANG Shitong, YANG Jianfeng, LI Xiangjuan, et al. Study of a new sparseaperture system[J]. Acta Photonica Sinica, 2010, 39(1): 148152.
[12] [12] YU Qianyang, QU Hongsong. Realization of highresolution visible earth observation on geostationary earth orbit[J]. Chinese Optics and Applied Optics, 2009, 2(1): 129.
[13] [13] LU Changming, WANG Jianjun, GAO Xin, et al. A study on the theory of Fourier telescope and its improvement[J]. Journal of Spacecraft TT & C Technology, 2010, 29(2): 1720.
[14] [14] GIEPMANS B N, ADAMS S R, ELLISMAN M H, et al. The fluorescent toolbox for assessing protein location and function[J]. Science, 2006, 312(5771): 217224.
[15] [15] LORD S J, LEE H L, MOERNER W E. Singlemolecule spectroscopy and imaging of biomolecules in living cells[J]. Analytical Chemistry, 82(6): 21922203.
[16] [16] XIE X S, CHOI P J, LI G W, et al. Singlemolecule approach to molecular biology in living bacterial cells[J]. Annual Review of Biophysics, 2008, 37: 417444.
[17] [17] PAWLEY J B. Handbook of biological confocal microscopy[M]. 3rd ed. USA: Springer, 2006.
[18] [18] FORKEY J N, QUINLAN M E, GOLDMAN Y E. Measurement of single macromolecule orientation by total internal reflection fluorescence polarization microscopy[J]. Biophysical Journal, 2005, 89(2): 12611271.
[19] [19] SYNGE E H. A suggested method for extending microscopic resolution into the ultramicroscopic region[J]. Philosophical Magazine, 1928, 6: 356362.
[20] [20] BETZIG E, LEWIS A, HAROOTUNIAN A, et al. Nearfield scanning optical microscopy(NSOM)development and biophysical applications[J]. Biophysical Journal, 1986, 49(1): 269279.
[21] [21] MOERNER W E. New directions in singlemolecule imaging and analysis[C]. Proc Natl Acad Sci, USA, 104, 2007: 1259612602.
[22] [22] THOMPSON R E, LARSON D R, WEBB W W. Precise nanometer localization analysis for individual fluorescent probes[J]. Biophysical Journal, 2002, 82(5): 27752783.
[23] [23] YILDIZ A, FORKEY J N, McKINNEY S A, et al. Myosin V walks handoverhand: single fluorophore imaging with 1.5 nm localization[J]. Science, 2003, 300(5628): 20612065.
[24] [24] PERTSINIDIS A, ZHANG Y, CHU S. Subnanometre singlemolecule localization, registration and distance measurements[J]. Nature, 2010, 466(7306): 647651.
[25] [25] BETZIG E, PATTERSON G H, SOUGRAT R, et al. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 2006, 313(5793): 16421645.
[26] [26] RUST M J, BATES M, ZHUANG X. Subdiffractionlimit imaging by stochastic optical reconstruction microscopy (STORM)[J]. Nature Methods, 2006, 3(10): 793795.
[27] [27] LV Zhijian, LU Jingze, WU Yaqiong, et al. Introduction to theories of several superresolution fluorescence microscopy methods and recent advance in the field[J]. Progress in Biochemistry and Biophysics, 2009, 36(12): 16261634.
[28] [28] HUANG B, BATES M, ZHUANG X. Superresolution uorescence microscopy[J]. Annual Review of Biochemistry, 2009, 78: 9931016.
[29] [29] SHROFF H, GALBRAITH C G, GALBRAITH J A, et al. Livecell photoactivated localization microscopy of nanoscale adhesion dynamics[J]. Nature Methods, 2008, 5(5): 417423.
[30] [30] PATTERSON G, DAVIDSON M, MANLEY S, et al. Superresolution imaging using singlemolecule localization[J]. Annual Review of Physical Chemistry, 2010, 61: 345367.
[31] [31] HELL S W, WICHMANN J. Breaking the diffraction resolution limit by stimulated emission: stimulatedemissiondepletion fluorescence microscopy[J]. Optics Letters, 1994, 19(11): 780782.
[32] [32] KLAR T A, JAKOBS S, DYBA M, et al. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(15): 82068210.
[33] [33] RITTWEGER E, HAN K Y, IRVINE S E, et al. STED microscopy reveals crystal colour centres with nanometric resolution[J]. Nature Photonics, 2009, 3: 144147.
[34] [34] WESTPHAL V, RIZZOLI S O, LAUTERBACH M A, et al. Videorate farfield optical nanoscopy dissects synaptic vesicle movement[J]. Science, 2008, 320(5873): 246249.
[35] [35] WILLIG K I, RIZZOLI S O, WESTPHAL V, et al. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis[J]. Nature, 2006, 440(7086): 935939.
[36] [36] GUSTAFSSON M G L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy[J]. Journal of Microscopy, 2000, 198(2): 8287.
[37] [37] GUSTAFSSON M G L. Nonlinear structuredillumination microscopy: widefield fluorescence imaging with theoretically unlimited resolution[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(37): 1308113086.
[38] [38] GUSTAFSSON M G L, SHAO L, CARITON P M, et al. Threedimensional resolution doubling in widefield fluorescence microscopy by structured illumination[J]. Biophysical Journal, 2008, 94(12): 49574970.
[39] [39] SCHERMELLEH L, CARLTON P M, HAASE S, et al. Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy[J]. Science, 2008, 320(5881): 13321336.
[40] [40] SHAO L, ISAAC B, UZAWA S, et al. Gustafsson. I5M: widefield light microscopy with 100nmscale resolution in three dimensions[J]. Biophysical Journal, 2008, 94(12): 49714983.
[41] [41] http://www.lynceetec.com/content/view/481/192/.
[42] [42] MICO V, ZALEVSKY Z, FERREIRA C, et al. Superresolution digital holographic microscopy for threedimensional samples[J]. Optics Express, 2008, 16(23): 1926019270.
[43] [43] SCHWARZ C J, KUZNETSOVA Y, BRUECK S R J. Imaging interferometric microscopy[J]. Optics Letters, 2003, 28(16): 14241426.
[44] [44] ALLEN R D, DAVID G B, NOMARSKI G. The ZeissNomarski differential equipment for transmitted light microscopy[J]. Z Wiss Mickrosk, 1969, 69(4): 193221.
[45] [45] FU D, OH S, CHOI W, et al. Quantitative DIC microscopy using an offaxis selfinterference approach[J]. Optics Letters, 2010, 35(14): 23702372.
[46] [46] McINTYRE T J, MAURER C, BERNET S, et al. Differential interference contrast imaging using a spatial light modulator[J]. Optics Letters, 1999, 34(19): 29882990.
[47] [47] McINTYRE T J, MAURER C, FASSL S, et al. Quantitative SLMbased differential interference contrast imaging[J]. Optics Express, 2010, 18(13): 1406314078.
[48] [48] HEISE B, STIFTER D. Quantitative phase reconstruction for orthogonalscanning differential phasecontrast optical coherence tomography[J]. Optics Letters, 2009, 34(9): 13061308.
[49] [49] ZERNIKE F. Phase contrast, a new method for the microscopic observation of transparent objects[J]. Physica, 1942, 9: Part I, 686698, Part II, 974986.
[50] [50] POPESCU G, DEFLORES L P, VAUGHAN J C, et al. Fourier phase microscopy for investigation of biological structures and dynamics[J]. Optics Letters, 2004, 29(21): 25032505.
[51] [51] http://www.microscopyu.com/articles/phasecontrast/phasemicroscopy.html.
[52] [52] GAO P, YAO B, HARDER I, et al. Phaseshifting Zernike phase contrast microscopy for quantitative phase measurement[J]. Optics Letters, 2011, 36(21): 43054307.
[53] [53] LI X, YAMAUCHI T, IWAI H, et al. Fullfield quantitative phase imaging by whitelight interferometry with active phase stabilization and its application to biological samples[J]. Optics Letters, 2006, 31(12): 18301832.
[54] [54] MASSATSCH P, CHARRIRE F, CUCHE E, et al. Timedomain optical coherence tomography with digital holographic microscopy[J]. Applied Optics, 2005, 44(10): 18061812.
Get Citation
Copy Citation Text
YAO Baoli, LEI Ming, XUE Bin, GAO Peng, YAN Shaohui, ZHAO Hui, ZHAO Wei, YANG Jianfeng, FAN Xuewu, QIU Yuehong, GAO Wei, ZHAO Baochang, LI Yingcai. Progress and Applications of Highresolution and Superresolution Optical Imaging in Space and Biology[J]. Acta Photonica Sinica, 2011, 40(11): 1607
Received: Oct. 22, 2011
Accepted: --
Published Online: Dec. 12, 2011
The Author Email: Baoli YAO (yaobl@opt.ac.cn)