Optics and Precision Engineering, Volume. 31, Issue 14, 2052(2023)
Preparation of Al nanoarray on quartz and fluorescence enhancement performance
[1] I YAMADA, K TAKANO, M HANGYO et al. Terahertz wire-grid polarizers with micrometer-pitch Al gratings. Optics Letters, 34, 274-276(2009).
[2] [2] 2褚金奎, 康维东, 曾祥伟, 等. 基于柔性纳米压印工艺制备中红外双层金属纳米光栅[J]. 光学 精密工程, 2017, 25(12): 3034-3040. doi: 10.3788/ope.20172512.3034CHUJ K, KANGW D, ZENGX W, et al. Fabrication of bilayer metallic nano gratings in mid-infrared region based on flexible nanoimprint lithography[J]. Opt. Precision Eng., 2017, 25(12): 3034-3040.(in Chinese). doi: 10.3788/ope.20172512.3034
[3] [3] 3任升, 刘丽炜, 李金华, 等. 纳米尺度下的局域场增强研究进展[J]. 中国光学, 2018, 11(1):31-46. doi: 10.3788/co.20181101.0031RENS, LIUL W, LIJ H, et al. Advances in the local field enhancement at nanoscale[J]. Chinese Journal of Optics, 2018, 11(1):31-46.(in Chinese). doi: 10.3788/co.20181101.0031
[4] S X ZHAO, Y Y YU, B Y ZHANG et al. Dual-mode circularly polarized light emission and metal-enhanced fluorescence realized by the luminophore-chiral cellulose nanocrystal interfaces. ACS Applied Materials & Interfaces, 13, 59132-59141(2021).
[5] A FULARZ, D STOGIANNIS, J H RICE. Cellulose acetate-based plasmonic crystals for surface-enhanced Raman and fluorescence spectroscopy. ACS Materials Au, 2, 453-463(2022).
[6] Z D LI, H S KANG, M Y LONG et al. Tunable near-field enhancement in structure-adjustable Au nanodumbbells for improved SERS and double-resonantly enhanced SHG. The Journal of Physical Chemistry C, 126, 12129-12135(2022).
[7] [7] 7袁纵横, 苏睿, 黄静. 宽谐振区光学纳米天线的谐振[J]. 光学 精密工程, 2013, 21(6): 1518-1523. doi: 10.3788/ope.20132106.1518YUANZ H, SUR, HUANGJ. Resonance of optical nano-antenna with wider resonant areas[J]. Opt. Precision Eng., 2013, 21(6): 1518-1523. (in Chinese). doi: 10.3788/ope.20132106.1518
[8] J H SONG, T ATAY, S F SHI et al. Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots induced by resonant coupling to spatially controlled surface plasmons. Nano Letters, 5, 1557-1561(2005).
[9] J H YE, C L HUANG, K Y HUANG et al. P-28: development of low-resistivity gate-metal process for LTPS-TFT-array backplane applications. SID Symposium Digest of Technical Papers, 53, 1141-1144(2022).
[10] F L QI, K J JEONG, J X GONG et al. Modulation of nano-superstructures and their optical properties. Accounts of Chemical Research, 55, 2425-2438(2022).
[11] [11] 11姜利英, 杭欣欣, 张培, 等. 用于检测多巴胺的荧光增强型适体传感器[J]. 光学 精密工程, 2019, 27(9): 50-54. doi: 10.3788/ope.20192709.1943JIANGL Y, HANGX X, ZHANGP, et al. Fluorescence-enhanced aptamer sensor for dopamine detection[J]. Opt. Precision Eng., 2019, 27(9): 50-54.(in Chinese). doi: 10.3788/ope.20192709.1943
[12] LX QIAN, W LI, Z GU et al. Ultra-Sensitive β-Ga2O3 Solar-Blind Photodetector with High-Density Al@Al2O3 Core-Shell Nanoplasmonic Array. Advanced Optical Materials, 10, 2102055(2022).
[13] V I BORISOV, A A LIZUNOVA, A K MAZHARENKO et al. Aluminum nanoparticles synthesis in spark discharge for ultraviolet plasmonics. Journal of Physics: Conference Series, 1695(2020).
[14] C FORESTIERE, A HANDIN, L D NEGRO. Enhancement of molecular fluorescence in the UV spectral range using aluminum nanoantennas. Plasmonics, 9, 715-725(2014).
[15] A SULTANGAZIYEV, A AKHMETOVA, Z KUNUSHPAYEVA et al. Aluminum foil as a substrate for metal enhanced fluorescence of bacteria labelled with quantum dots, shows very large enhancement and high contrast. Sensing and Bio-Sensing Research, 28, 100332(2020).
[16] B KRAUSE, M T PHAM, H M LUONG et al. Periodic nanohole arrays with enhanced lasing and spontaneous emissions for low-cost plasmonic devices. ACS Applied Nano Materials, 5, 1185-1191(2022).
[17] Q ZHAO, H YANG, B B NIE et al. Wafer-scale and cost-effective manufacturing of controllable nanogap arrays for highly sensitive SERS sensing. ACS Applied Materials & Interfaces, 14, 3580-3590(2022).
[18] N DORH, A SARUA, J STOKES et al. Fluorescent emission enhancement by aluminium nanoantenna arrays in the near UV. Journal of Optics, 18(2016).
[19] Z Y LI, Y N XIA. Metal nanoparticles with gain toward single-molecule detection by surface-enhanced Raman scattering. Nano Letters, 10, 243-249(2010).
[20] Z LV, L LIU, Y X ZHANG et al. Comprehensive study on the optical properties of graded Al component Al
[21] Y QIU, Z PAN, H CHEN et al. Current progress in developing metal oxide nanoarrays-based photoanodes for photoelectrochemical water splitting. Science Bulletin, 64, 1348-1380(2019).
[22] H Y WANG, Y Y GUO, H X HAO et al. Bright CdSe/CdS quantum dot light-emitting diodes with modulated carrier dynamics via the local Kirchhoff law. ACS Applied Materials & Interfaces, 13, 56476-56484(2021).
[23] A RADCHANKA, V HRYBOUSKAYA, A IODCHIK et al. Zeta potential-based control of CdSe/ZnS quantum dot photoluminescence. The Journal of Physical Chemistry Letters, 13, 4912-4917(2022).
[24] E D PALIK. Handbook of Optical Constants of Solids, Volume 1(1985).
[25] J L HU, L CHEN, Z C LIAN et al. Deep-ultraviolet-blue-light surface plasmon resonance of Al and Alcore/Al2O3shell in spherical and cylindrical nanostructures. The Journal of Physical Chemistry C, 116, 15584-15590(2012).
[26] S RIEGSINGER, R POPESCU, D GERTHSEN et al. Room-temperature liquid-phase synthesis of aluminium nanoparticles. Chemical Communications (Cambridge, England), 58, 7499-7502(2022).
[27] [27] 27徐良敏, 张正龙, 蔡晓燕, 等. 金属表面荧光增强的物理增强机制[J]. 发光学报, 2009, 30(3): 373-378.XUL M, ZHANGZ L, CAIX Y, et al. Physical mechanisms of fluorescence enhancement at metal surface[J]. Chinese Journal of Luminescence, 2009, 30(3): 373-378.(in Chinese)
Get Citation
Copy Citation Text
Ziheng WANG, Jinhua LI, Xueying CHU, Ye ZHANG. Preparation of Al nanoarray on quartz and fluorescence enhancement performance[J]. Optics and Precision Engineering, 2023, 31(14): 2052
Category: Micro/Nano Technology and Fine Mechanics
Received: Nov. 30, 2022
Accepted: --
Published Online: Aug. 2, 2023
The Author Email: LI Jinhua (lijh@cust.edu.cn), ZHANG Ye (Zhangye84829@cust.edu.cn)