Optics and Precision Engineering, Volume. 31, Issue 17, 2483(2023)

Optical properties and quantum efficiency of multilayer complicated GaAs-based photocathode

Cheng FENG1,*... Jian LIU2, Yijun ZHANG3 and Yunsheng QIAN3 |Show fewer author(s)
Author Affiliations
  • 1School of Information and Communication Engineering, Nanjing Institute of Technology, Nanjing267, China
  • 2Fundamental Education and Experimental Center, Nanjing University of Science and Technology, Nanjing10094, China
  • 3School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing210094, China
  • show less
    References(20)

    [1] K CHRZANOWSKI. Review of night vision technology. Opto-Electronics Review, 21, 153-181(2013).

    [2] J J ZOU, X W GE, Y J ZHANG et al. Negative electron affinity GaAs wire-array photocathodes. Optics Express, 24, 4632-4639(2016).

    [3] F CHENG, Y J ZHANG, Y SH QIAN et al. Improved quantum efficiency and stability of GaAs photocathode using favorable illumination during activation. Ultramicroscopy, 202, 128-132(2019).

    [4] [4] 蔡志鹏, 杨文正, 唐伟东, 等. 大梯度指数掺杂透射式GaAs光电阴极响应特性的理论分析[J]. 物理学报, 2012, 61(18): 513-518. doi: 10.7498/aps.61.187901CAIZH P, YANGW ZH, TANGW D, et al. Theoretical analysis of response characteristics for the large exponential-doping transmission-mode GaAs photocathodes[J]. Acta Physica Sinica, 2012, 61(18): 513-518.(in Chinese). doi: 10.7498/aps.61.187901

    [5] J W SCHWEDE, T SARMIENTO, V K NARASIMHAN et al. Photon-enhanced thermionic emission from heterostructures with low interface recombination. Nature Communications, 4, 1576(2013).

    [6] X G JIN, S OHKI, T ISHIKAWA et al. Analysis of quantum efficiency improvement in spin-polarized photocathode. Journal of Applied Physics, 120, 164501(2016).

    [7] [7] 赵静, 覃翠, 刘伟伟, 等. 不同掺杂砷化镓光电阴极光电发射性能分析[J]. 光学学报, 2016, 36(10): 1023001. doi: 10.3788/aos201636.1023001ZHAOJ, QINC, LIUW W, et al. Photoemission performance analysis of GaAs photocathodes with different doping concentrations[J]. Acta Optica Sinica, 2016, 36(10): 1023001.(in Chinese). doi: 10.3788/aos201636.1023001

    [8] [8] 王自衡, 李诗曼, 石峰, 等. InGaAs 光电阴极的Cs/NF3激活[J], 光学 精密工程, 2023, 31(9): 1277-1284. doi: 10.37188/ope.20233109.1277WANGZ H, LISH M, SHIF, et al. Cs/NF3 activation of InGaAs photocathode[J]. Opt. Precision Eng., 2023, 31(9): 1277-1284. (in Chinese). doi: 10.37188/ope.20233109.1277

    [9] Y J ZHANG, J ZHAO, J J ZOU et al. The high quantum efficiency of exponential-doping AlGaAs/GaAs photocathodes grown by metalorganic chemical vapor deposition. Chinese Physics Letters, 88-91(2013).

    [10] W LIU, Y Q CHEN, W T LU et al. Record-level quantum efficiency from a high polarization strained GaAs/GaAsP superlattice photocathode with distributed Bragg reflector. Applied Physics Letters, 109, 252104(2016).

    [11] J ZHAO, W K SHEN, B K CHANG et al. Comparison of module structure of wideband response GaAs photocathode grown by MBE and MOCVD. Optics Communications, 328, 129-134(2014).

    [12] H C CASEY Jr, D D SELL, K W WECHT. Concentration dependence of the absorption coefficient for n- and p-type GaAs between 1.3 and 1.6 eV. Journal of Applied Physics, 46, 250-257(1975).

    [13] M LEVINSHTEIN, S RUMYANSTEV, M SHUR. Handbook Series on Semiconductor Parameters(Vol.2)(1996).

    [14] J J ZOU, B K CHANG, H L CHEN et al. Variation of quantum-yield curves for GaAs photocathodes under illumination. Journal of Applied Physics, 101(2007).

    [15] G A ANTYPAS, L W JAMES, J J UEBBING. Operation of III-V semiconductor photocathodes in the semitransparent mode. Journal of Applied Physics, 41, 2888-2894(1970).

    [16] [16] 赵静, 常本康, 熊雅娟, 等. 发射层对指数掺杂Ga1-xAlx As/GaAs光阴极性能的影响[J]. 电子器件, 2011, 34(2):119-124.ZHAOJ, CHANGB K, XIONGY J, et al. Influence of the active layer on exponential-doping Ga1-xAlxAs/GaAs photocathode performances[J]. Chinese Journal of Electron Devices, 2011, 34(2):119-124.(in Chinese)

    [17] Z JING, B K CHANG, Y J XIONG et al. Influence of the antireflection, window, and active layers on optical properties of exponential-doping transmission-mode GaAs photocathode modules. Optics Communications, 285, 589-593(2012).

    [18] [18] 张益军. 变掺杂GaAs光电阴极研制及其特性评估[D]. 南京: 南京理工大学, 2012.ZHANGY J. Development and Characteristics Evaluation of Variable Doped GaAs Photocathode[D]. Nanjing: Nanjing University of Science and Technology, 2012. (in Chinese)

    [19] C FENG, Y J ZHANG, J LIU et al. Effect of graded bandgap structure on photoelectric performance of transmission-mode AlxGa1-xAs/GaAs photocathode modules. Applied Optics, 56, 9044-9049(2017).

    [20] T LIN, J N XIE, T J ZHANG et al. Studies on the material and photoluminescence characteristics of the structure of Al0.9Ga0.1As/GaAs DBR with varied doping. Journal of Electronic Materials, 52, 730-737(2023).

    Tools

    Get Citation

    Copy Citation Text

    Cheng FENG, Jian LIU, Yijun ZHANG, Yunsheng QIAN. Optical properties and quantum efficiency of multilayer complicated GaAs-based photocathode[J]. Optics and Precision Engineering, 2023, 31(17): 2483

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Modern Applied Optics

    Received: Apr. 3, 2023

    Accepted: --

    Published Online: Oct. 9, 2023

    The Author Email: FENG Cheng (fcheng411@163.com)

    DOI:10.37188/OPE.20233117.2483

    Topics