Journal of the Chinese Ceramic Society, Volume. 50, Issue 7, 1821(2022)
Recent Development on Photoluminescence Performance Modulation and Mechanism Study for Graphene Quantum Dots
[1] [1] ESPINOSA-ORTEGA T, LUKYANCHUK I A, RUBO Y G. Magnetic properties of graphene quantum dots[J]. Phys Rev B, 2013, 87(20): 205434.
[2] [2] XU A L, YANG S W, LIU Z D, et al. Near-infrared photodetector based on schottky junctions of monolayer graphene/GeOI[J]. Mater Lett, 2018, 227: 17-20.
[3] [3] WEI W Y, YANG S W, WANG G, et al. Bandgap engineering of two-dimensional C3N bilayers[J]. Nat Electron, 2021, 4(7): 486-494.
[4] [4] HE P, SUN J, TIAN S Y, et al. Processable aqueous dispersions of graphene stabilized by graphene quantum dots[J]. Chem Mater, 2015, 27(1): 218-226.
[5] [5] LI J P, YANG S W, LIU Z Y, et al. Imaging cellular aerobic glycolysis using carbon dots for early warning of tumorigenesis[J]. Adv Mater, 2021, 33(1): 2005096.
[6] [6] SUN J, DENG Y, LI J P, et al. A New graphene derivative: Hydroxylated graphene with excellent biocompatibility[J]. ACS Appl Mater Interfaces, 2016, 8(16): 10226-10233.
[7] [7] BIAN H, WANG Q, YANG S W, et al. Nitrogen-doped graphene quantum dots for 80% photoluminescence quantum yield for inorganic-CsPbI3 perovskite solar cells with efficiency beyond 16%[J]. J Mater Chem A, 2019, 7(10): 5740-5747.
[8] [8] YANG S W, LI W, YE C C, et al. C3N-A 2D crystalline, hole-free, tunable-narrow-bandgap semiconductor with ferromagnetic properties[J]. Adv Mater, 2017, 29(16): 1605625.
[9] [9] HEINL J, SCHNEIDER M, BROUWER P W. Interplay of aharonov-bohm and berry phases in gate-defined graphene quantum dots[J]. Phys Rev B, 2013, 87(24): 245426.
[10] [10] CHANDRA S, PATHAN S H, MITRA S, et al. Tuning of photoluminescence on different surface functionalized carbon quantum dots[J]. RSC Adv, 2012, 2(9): 3602-3606.
[11] [11] XU X Y, RAY R, GU Y L, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments[J]. J Am Chem Soc, 2004, 126(40): 12736-12737.
[12] [12] LI Y Q, XIAO Y, TAO Q, et al. Selective coordination and localized polarization in graphene quantum dots: Detection of fluoride anions using ultra-low-field NMR relaxometry[J]. Chin Chem Lett, 2021, 32(12): 3921-3926
[13] [13] HU X R, ZHU W, ZHAO M H, et al. Graphene quantum dots promoted the synthesis of heavily n-type graphene for near-infrared photodetectors[J]. J Phys Chem C, 2020, 124(2): 1674-1680.
[14] [14] LU F, YANG S W, SONG Y X, et al. Hydroxyl functionalized carbon dots with strong radical scavenging ability promote cell proliferation[J]. Mater Res Express, 2019, 6(6): 065030.
[15] [15] LI X M, RUI M C, SONG J Z, et al. Carbon and graphene quantum dots for optoelectronic and energy devices: A review[J]. Adv Funct Mater, 2015, 25(31): 4929-4947.
[16] [16] HUANG H, YANG S, LIU Y, et al. Photocatalytic polymerization from amino acid to protein by carbon dots at room temperature[J]. ACS Appl Bio Mater, 2019, 2(11): 5144-5153.
[17] [17] WANG B, SONG H, QU X, et al. Carbon dots as a new class of nanomedicines: Opportunities and challenges[J]. Chem Rev, 2021, 442(1): 214010.
[18] [18] YANG S W, WANG X L, HE P, et al. Graphene quantum dots with pyrrole n and pyridine n: Superior reactive oxygen species generation efficiency for metal-free sonodynamic tumor therapy[J]. Small, 2021, 17(10): 2004867.
[19] [19] LI J P, YANG S W, DENG Y, et al. Emancipating target-functionalized carbon dots from autophagy vesicles for a novel visualized tumor therapy[J]. Adv Funct Mater, 2018, 28(30): 1800881.
[20] [20] XU A L, WANG G, LI Y Q, et al. Carbon-based quantum dots with solid-state photoluminescent: Mechanism, implementation, and application[J]. Small, 2020, 16(48): 2004621.
[21] [21] ZHI B, YAO X X, CUI Y, et al. Synthesis, applications and potential photoluminescence mechanism of spectrally tunable carbon dots[J]. Nanoscale, 2019, 11(43): 20411-20428.
[22] [22] HE J L, HE Y L, CHEN Y H, et al. Solid-state carbon dots with red fluorescence and efficient construction of dual-fluorescence morphologies[J]. Small, 2017, 13(26): 1700075.
[23] [23] HE J L, HE Y L, CHEN Y H, et al. Solid-state carbon dots with red fluorescence and efficient construction of dual-fluorescence morphologies[J]. Small, 2017, 13(26): 1700075.
[24] [24] LI M X, CHEN T, GOODING J J, et al. Review of carbon and graphene quantum dots for sensing[J]. ACS Sens, 2019, 4(7): 1732-1748.
[25] [25] WANG B, LU S. The light of carbon dots: From mechanism to applications[J]. Matter, 2022, 5(1): 110-149.
[26] [26] LIU J J, LI D W, ZHANG K, et al. One-step hydrothermal synthesis of nitrogen-doped conjugated carbonized polymer dots with 31% efficient red emission for in vivo imaging[J]. Small, 2018, 14(15): 1703919.
[27] [27] ZHANG Z P, ZHANG J, CHEN N, et al. Graphene quantum dots: An emerging material for energy-related applications and beyond[J]. Energy Environ Sci, 2012, 5(10): 8869-8890.
[28] [28] HAQUE E, KIM J, MALGRAS V, et al. Recent advances in graphene quantum dots: Synthesis, properties, and applications[J]. Small Methods, 2018, 2(10): 1800050.
[29] [29] NEKOUEIAN K, AMIRI M, SILLANPAA M, et al. Carbon-based quantum particles: An electroanalytical and biomedical perspective[J]. Chem Soc Rev, 2019, 48(15): 4281-4316.
[30] [30] KANG Z H, LEE S T. Carbon dots: Advances in nanocarbon applications[J]. Nanoscale, 2019, 11(41): 19214-19224.
[31] [31] WANG G, XU A L, HE P, et al. Green preparation of lattice phosphorus doped graphene quantum dots with tunable emission wavelength for bio-imaging[J]. Mater Lett, 2019, 242: 156-159.
[32] [32] XU A L, HE P, HUANG T, et al. Selective supramolecular interaction of ethylenediamine functionalized graphene quantum dots: Ultra-sensitive photoluminescence detection for nickel ion in vitro[J]. Synth Met, 2018, 244: 106-112.
[33] [33] PAN D Y, ZHANG J C, LI Z, et al. Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots[J]. Adv Mater, 2010, 22(6): 734-738.
[34] [34] YAN X, CUI X, LI B S, et al. Large, solution-processable graphene quantum dots as light absorbers for photovoltaics[J]. Nano Lett, 2010, 10(5): 1869-1873.
[35] [35] HUANG H G, YANG S W, LI Q T, et al. Electrochemical cutting in weak aqueous electrolytes: The strategy for efficient and controllable preparation of graphene quantum dots[J]. Langmuir, 2018, 34(1): 250-258.
[36] [36] ZHU J L, TANG Y F, WANG G, et al. Green, rapid, and universal preparation approach of graphene quantum dots under ultraviolet irradiation[J]. ACS Appl Mater Interfaces, 2017, 9(16): 14470-14477.
[37] [37] TANG L B, JI R B, CAO X K, et al. Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots[J]. ACS Nano, 2012, 6(6): 5102-5110.
[38] [38] WU X, TIAN F, WANG W X, et al. Fabrication of highly fluorescent graphene quantum dots using l-glutamic acid ior in vitro/in vivo imaging and sensing[J]. J Mater Chem C, 2013, 1(31): 4676-4684.
[39] [39] DENG Y H, ZHAO D X, CHEN X, et al. Long lifetime pure organic phosphorescence based on water soluble carbon dots[J]. Chem Commun, 2013, 49(51): 5751-5753.
[40] [40] LUO Z M, QI G Q, CHEN K Y, et al. Microwave-assisted preparation of white fluorescent graphene quantum dots as a novel phosphor for enhanced white-light-emitting diodes[J]. Adv Funct Mater, 2016, 26(16): 2739-2744.
[41] [41] QIAO Z A, WANG Y F, GAO Y, et al. Commercially activated carbon as the source for producing multicolor photoluminescent carbon dots by chemical oxidation[J]. Chem Commun, 2010, 46(46): 8812-8814.
[42] [42] LI Y Q, DONG H, TAO Q, et al. Enhancing the magnetic relaxivity of mri contrast agents via the localized superacid microenvironment of graphene quantum dots[J]. Biomaterials, 2020, 250: 120056.
[43] [43] DENG X X, SUN J, YANG S W, et al. The emission wavelength dependent photoluminescence lifetime of the n-doped graphene quantum dots[J]. Appl Phys Lett, 2015, 107(24): 241905.
[44] [44] WANG G, GUO G L, CHEN D, et al. Facile and highly effective synthesis of controllable lattice sulfur-doped graphene quantum dots via hydrothermal treatment of durian[J]. ACS Appl Mater Interfaces, 2018, 10(6): 5750-5759.
[45] [45] ZHU S J, MENG Q N, WANG L, et al. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging[J]. Angew Chem, Int Ed, 2013, 52(14): 3953-3957.
[46] [46] YOON H, CHANG Y H, SONG S H, et al. Intrinsic photoluminescence emission from subdomained graphene quantum dots[J]. Adv Mater, 2016, 28(26): 5255-5261.
[47] [47] YE R Q, XIANG C S, LIN J, et al. Coal as an abundant source of graphene quantum dots[J]. Nat Commun, 2013, 4: 2943.
[48] [48] JIANG L, DING H Z, LU S Y, et al. Photoactivated fluorescence enhancement in f,n-doped carbon dots with piezochromic behavior[J]. Angew Chem Int Ed, 2020, 59(25): 9986-9991.
[49] [49] AI L, YANG Y, WANG B, et al. Insights into photoluminescence mechanisms of carbon dots: Advances and perspectives[J]. Sci Bull, 2021, 66(8): 839-856.
[50] [50] SUN J, YANG S W, WANG Z Y, et al. Ultra-high quantum yield of graphene quantum dots: Aromatic-nitrogen doping and photoluminescence mechanism[J]. Part Part Syst Charact, 2015, 32(4): 434-440.
[51] [51] KIM M, KANG P W, PARK S, et al. Enhancing the luminescence of carbon nanodots in films by tailoring the functional groups through alkylamine-functionalization and reduction[J]. Phys Chem Chem Phys, 2019, 21(47): 26095-26101.
[52] [52] TANG J, ZHANG J, ZHANG Y F, et al. Influence of group modification at the edges of carbon quantum dots on fluorescent emission[J]. Nanoscale Res Lett, 2019, 14(1): 241.
[53] [53] YANG Z C, WANG M, YONG A M, et al. Intrinsically fluorescent carbon dots with tunable emission derived from hydrothermal treatment of glucose in the presence of monopotassium phosphate[J]. Chem Commun, 2011, 47(42): 11615-11617.
[54] [54] SUN Y P, ZHOU B, LIN Y, et al. Quantum-sized carbon dots for bright and colorful photoluminescence[J]. J Am Chem Soc, 2006, 128(24): 7756-7757.
[55] [55] LIU H P, YE T, MAO C D. Fluorescent carbon nanoparticles derived from candle soot[J]. Angew Chem, Int Ed, 2007, 46(34): 6473-6475.
[56] [56] YU J, SONG H, LI X, et al. Computational studies on carbon dots electrocatalysis: A review[J]. Adv Funct Mater, 2021, 31(49), 2107196.
[57] [57] TANG L B, JI R B, LI X M, et al. Deep ultraviolet to near-infrared emission and photoresponse in layered N-doped graphene quantum dots[J]. ACS Nano, 2014, 8(6): 6312-6320.
[58] [58] YANG S W, ZHU C, SUN J, et al. Triphenylphosphine modified graphene quantum dots: Spectral modulation for full spectrum of visible light with high quantum yield[J]. RSC Adv, 2015, 5(42): 33347-33350.
[59] [59] GE J C, LAN M H, ZHOU B J, et al. A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation[J]. Nat Commun, 2014, 5: 4596.
[60] [60] GAO D, LIU A M, ZHANG Y S, et al. Temperature triggered high-performance carbon dots with robust solvatochromic effect and self-quenching-resistant deep red solid state fluorescence for specific lipid droplet imaging[J]. Chem Eng J, 2021, 415: 128984.
[61] [61] GUO X, WANG C F, YU Z Y, et al. Facile access to versatile fluorescent carbon dots toward light-emitting diodes[J]. Chem Commun, 2012, 48(21): 2692-2694.
[62] [62] CAO L, WANG X, MEZIANI M J, et al. Carbon dots for multiphoton bioimaging[J]. J Am Chem Soc, 2007, 129(37): 11318-11319.
[63] [63] YANG S T, CAO L, LUO P G J, et al. Carbon dots for optical imaging in vivo[J]. J Am Chem Soc, 2009, 131(32): 11308-11309.
[64] [64] XU C, YANG S W, TIAN L F, et al. Fabrication of centimeter-scale light-emitting diode with improved performance based on graphene quantum dots[J]. Appl Phys Express, 2017, 10(3): 032102.
[65] [65] FANG Y X, GUO S J, LI D, et al. Easy synthesis and imaging applications of cross-linked green fluorescent hollow carbon nanoparticles[J]. ACS Nano, 2012, 6(1): 400-409.
[66] [66] LI X M, ZHANG S L, KULINICH S A, et al. Engineering surface states of carbon dots to achieve controllable luminescence for solid-luminescent composites and sensitive Be2+ detection[J]. Sci Rep, 2014, 4: 4976.
[67] [67] DONG Y Q, PANG H C, YANG H B, et al. Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission[J]. Angew Chem, Int Ed, 2013, 52(30): 7800-7804.
[68] [68] KRYSMANN M J, KELARAKIS A, DALLAS P, et al. Formation mechanism of carbogenic nanoparticles with dual photoluminescence emission[J]. J Am Chem Soc, 2012, 134(2): 747-750.
[69] [69] GAN Z X, XU H, HAO Y L. Mechanism for excitation-dependent photoluminescence from graphene quantum dots and other graphene oxide derivates: Consensus, debates and challenges[J]. Nanoscale, 2016, 8(15): 7794-7807.
[70] [70] XU Q F, ZHOU Q, HUA Z, et al. Single-particle spectroscopic measurements of fluorescent graphene quantum dots[J]. ACS Nano, 2013, 7(12): 10654-10661.
[71] [71] YANG S W, SUN J, ZHU C, et al. Supramolecular recognition control of polyethylene glycol modified N-doped graphene quantum dots: Tunable selectivity for alkali and alkaline-earth metal ions[J]. Analyst, 2016, 141(3): 1052-1059.
[72] [72] LI Y, ZHAO Y, CHENG H H, et al. Nitrogen-doped graphene quantum dots with oxygen-rich functional groups[J]. J Am Chem Soc, 2012, 134(1): 15-18.
[73] [73] LEE J, KIM K, PARK W I, et al. Uniform graphene quantum dots patterned from self-assembled silica nanodots[J]. Nano Lett, 2012, 12(12): 6078-6083.
[74] [74] MAO X J, ZHENG H Z, LONG Y J, et al. Study on the fluorescence characteristics of carbon dots[J]. Spectrochim Acta A, 2010, 75(2): 553-557.
[75] [75] LI Y, HU Y, ZHAO Y, et al. An Electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics[J]. Adv Mater, 2011, 23(6): 776-780.
[76] [76] WANG H, TIAN H W, WANG S M, et al. Simple and eco-friendly solvothermal synthesis of luminescent reduced graphene oxide small sheets[J]. Mater Lett, 2012, 78: 170-173.
[77] [77] YANG S W, SUN J, HE P, et al. Selenium doped graphene quantum dots as an ultrasensitive redox fluorescent switch[J]. Chem Mater, 2015, 27(6): 2004-2011.
[78] [78] ZHU C, YANG S W, WANG G, et al. Negative induction effect of graphite n on graphene quantum dots: Tunable band gap photoluminescence[J]. J Mater Chem C, 2015, 3(34): 8810-8816.
[79] [79] ZHU C, YANG S W, WANG G, et al. A new mild, clean and highly efficient method for the preparation of graphene quantum dots without by-products[J]. J Mater Chem B, 2015, 3(34): 6871-6876.
[80] [80] YANG S W, SUN J, LI X B, et al. Large-scale fabrication of heavy doped carbon quantum dots with tunable-photoluminescence and sensitive fluorescence detection[J]. J Mater Chem A, 2014, 2(23): 8660-8667.
[81] [81] KOZAWA D, ZHU X, MIYAUCHI Y, et al. Excitonic photoluminescence from nanodisc states in graphene oxides[J]. J Phys Chem Lett, 2014, 5(10): 1754-1759.
[82] [82] CUSHING S K, LI M, HUANG F Q, et al. Origin of strong excitation wavelength dependent fluorescence of graphene oxide[J]. ACS Nano, 2014, 8(1): 1002-1013.
[83] [83] KASHA M. Characterization of electronic transitions in complex molecules[J]. Discuss Faraday Soc, 1950: 14-19.
[84] [84] LIU J, LIU X L, LUO H J, et al. One-step preparation of nitrogen-doped and surface-passivated carbon quantum dots with high quantum yield and excellent optical properties[J]. RSC Adv, 2014, 4(15): 7648-7654.
[85] [85] GAN Z X, XIONG S J, WU X L, et al. Mn2+-bonded reduced graphene oxide with strong radiative recombination in broad visible range caused by resonant energy transfer[J]. Nano Lett, 2011, 11(9): 3951-3956.
[86] [86] DENG Y H, CHEN X, WANG F, et al. Environment-dependent photon emission from solid state carbon dots and its mechanism[J]. Nanoscale, 2014, 6(17): 10388-10393.
[87] [87] LIU R L, WU D Q, LIU S H, et al. An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers[J]. Angew Chem Int Ed, 2009, 48(25): 4598-4601.
[88] [88] GAN Z X, XIONG S J, WU X L, et al. Mechanism of photoluminescence from chemically derived graphene oxide: Role of chemical reduction[J]. Adv Opt Mater, 2013, 1(12): 926-932.
[89] [89] GAN Z X, WU X L, ZHOU G X, et al. Is there real upconversion photoluminescence from graphene quantum dots?[J]. Adv Opt Mater, 2013, 1(8): 554-558.
[90] [90] SUN W, DU Y X, WANG Y Q. Study on fluorescence properties of carbogenic nanoparticles and their application for the determination of ferrous succinate[J]. JLum, 2010, 130(8): 1463-1469.
[91] [91] CHEN X F, ZHANG W X, WANG Q J, et al. C-8-structured carbon quantum dots: Synthesis, blue and green double luminescence, and origins of surface defects[J]. Carbon, 2014, 79: 165-173.
[92] [92] SHEN L M, ZHANG L P, CHEN M L, et al. The production of ph-sensitive photoluminescent carbon nanoparticles by the carbonization of polyethylenimine and their use for bioimaging[J]. Carbon, 2013, 55: 343-349.
[93] [93] HAO Y L, GAN Z X, XU J Q, et al. Poly(ethylene glycol)/carbon quantum dot composite solid films exhibiting intense and tunable blue-red emission[J]. Appl Surf Sci, 2014, 311: 490-497.
[94] [94] ZHU S J, ZHANG J H, QIAO C Y, et al. Strongly green-photoluminescent graphene quantum dots for bioimaging applications[J]. Chem Commun, 2011, 47(24): 6858-6860.
[95] [95] KUMAR P V, BERNARDI M, GROSSMAN J C. The impact of functionalization on the stability, work function, and photoluminescence of reduced graphene oxide[J]. ACS Nano, 2013,
[96] [96] ZHU S J, ZHANG J H, LIU X, et al. Graphene quantum dots with controllable surface oxidation, tunable fluorescence and up-conversion emission[J]. RSC Adv, 2012, 2(7): 2717-2720.
[97] [97] WANG L, ZHU S J, WANG H Y, et al. Unraveling bright molecule-like state and dark intrinsic state in green-fluorescence graphene quantum dots via ultrafast spectroscopy[J]. Adv Opt Mater, 2013, 1(3): 264-271.
[98] [98] TETSUKA H, ASAHI R, NAGOYA A, et al. Optically tunable amino-functionalized graphene quantum dots[J]. Adv Mater, 2012, 24(39): 5333-5338.
[99] [99] WANG C X, XU Z Z, CHENG H, et al. A hydrothermal route to water-stable luminescent carbon dots as nanosensors for pH and temperature[J]. Carbon, 2015, 82: 87-95.
[100] [100] ZHENG J X, WANG Y L, ZHANG F, et al. Microwave-assisted hydrothermal synthesis of solid-state carbon dots with intensive emission for white light-emitting devices[J]. J Mater Chem C, 2017, 5(32): 8105-8111.
[101] [101] YUAN T, YUAN F L, LI X H, et al. Fluorescence-phosphorescence dual emissive carbon nitride quantum dots show 25% white emission efficiency enabling single-component WLEDs[J]. Chem Sci, 2019, 10(42): 9801-9806.
[102] [102] PARK M, KIM H S, YOON H, et al. Controllable singlet-triplet energy splitting of graphene quantum dots through oxidation: from phosphorescence to TADF[J]. Adv Mater, 2020, 32(31): 2000936.
[103] [103] AI L, SHI R, YANG J, et al. Efficient combination of g-C3N4 and cds for enhanced photocatalytic performance: a review of synthesis, strategies, and applications[J]. Small, 2021, 17(48): 2007523.
[104] [104] JIANG Z C, LIN T N, LIN H T, et al. A facile and low-cost method to enhance the internal quantum yield and external light-extraction efficiency for flexible light-emitting carbon-dot films[J]. Sci Rep, 2016, 6: 19991.
[105] [105] WANG C, CHEN Y Y, HU T T, et al. Color tunable room temperature phosphorescent carbon dot based nanocomposites obtainable from multiple carbon sources via a molten salt method[J]. Nanoscale, 2019, 11(24): 11967-11974.
[106] [106] SHEN C L, ZANG J H, LOU Q, et al. In-situ embedding of carbon dots in a trisodium citrate crystal matrix for tunable solid-state fluorescence[J]. Carbon, 2018, 136: 359-368.
[107] [107] WEI J Y, LOU Q, ZANG J H, et al. Scalable synthesis of green fluorescent carbon dot powders with unprecedented efficiency[J]. Adv Opt Mater, 2020, 8(7): 1901938.
[108] [108] ZHAO W J, HE Z K, LAM J W Y, et al. Rational molecular design for achieving persistent and efficient pure organic room-temperature phosphorescence[J]. Chem, 2016, 1(4): 592-602.
[109] [109] ZHU S J, SONG Y B, SHAO J R, et al. Non-conjugated polymer dots with crosslink-enhanced emission in the absence of fluorophore units[J]. Angew Chem Int Ed, 2015, 54(49): 14626-14637.
[110] [110] ZHOU D, DI L, JING P T, et al. Conquering aggregation-induced solid-state luminescence quenching of carbon dots through a carbon dots-triggered silica gelation process[J]. Chem Mater, 2017, 29(4): 1779-1787.
Get Citation
Copy Citation Text
CHEN Liangfeng, LI Yongqiang, WANG Hang, HE Peng, DONG Hui, YANG Siwei, DING Guqiao. Recent Development on Photoluminescence Performance Modulation and Mechanism Study for Graphene Quantum Dots[J]. Journal of the Chinese Ceramic Society, 2022, 50(7): 1821
Special Issue:
Received: Jan. 13, 2022
Accepted: --
Published Online: Dec. 6, 2022
The Author Email: Liangfeng CHEN (liangfengchen@mail.sim.ac.cn)
CSTR:32186.14.