Journal of Synthetic Crystals, Volume. 49, Issue 8, 1412(2020)
Research Progress of CdSe Crystal and Cr2+-doped Laser
[7] [7] Roberts D A, Catella G C. Simplified characterization of nonlinear optical crystals: a plea for standardization of nomenclature and conventions [J]. IEEE Journal of Quantum Electronics,1992,28(10): 2057-2074.
[8] [8] Finsterbusch K, Bayer A, Zacharias H. Tunable, narrow-band picosecond radiation in the mid-infrared by difference frequency mixing in GaSe and CdSe[J]. Applied Physics B, 2004, 79(4): 457-462.
[9] [9] Alford W J, Smith A V. Wavelength variation of the second-order nonlinear coefficients of KNbO3, KTiOPO4, KTiOAsO4, LiNbO3, LiIO3, β-BaB2O4, KH2PO4 and LiB3O5 crystals: a test of Miller wavelength scaling[J]. Office of Scientific and Technical Information Technical Reports,2000,18(4): 524-533.
[10] [10] Kolesnikov N N, James R B, Berzigiarova N S, et al. HPVB and HPVZM shaped growth of CdZnTe, CdSe and ZnSe crystals[J]. International Symposium on Optical Science and Technology, 2003: 93-104.
[11] [11] Arthur L. Robinson, Richard H Bube. Photoelectronic properties of defects in CdSe single crystals[J]. Journal of Applied Physics, 1971, 42(13): 5280-5295.
[12] [12] Steininger J. Growth of CdSe single crystals by temperature gradient solution zoning in excess Se[J]. Materials Research Bulletin, 1968, 3(7): 595-598.
[13] [13] Burger A, Henderson D O, Morgan S H, et al. Purification, crystal growth and characterization of CdSe single crystals[J]. Journal of Crystal Growth, 1991, 109(1-4): 298-303.
[14] [14] Burger A, Roth M. Growth of medium electrical resistivity CdSe single crystals by the temperature gradient solution zoning technique[J]. Journal of Crystal Growth, 1984, 67(3): 507-512.
[15] [15] Piper W W, Polich S J. Vapor phase growth of single crystals of II-VI compounds[J]. Journal of Applied Physics, 1961, 32(7): 1278-1279.
[16] [16] Manfredotti C. Electron trapping levels in cadmium selenide single crystals[J]. Journal of Applied Physics, 1973, 44(12): 5463.
[17] [17] Akimov V A, Frolov M P, Korostelin Y V, et al. Vapor growth of CdSe∶Cr and CdS∶Cr single crystals for mid-infrared lasers[J]. Optical Materials, 2009, 31(12): 1888-1890.
[19] [19] Zhu S F, Zhao B J, Jin Y R, et al. Growth and characterization of CdSe single crystals by modified vertical vapor phase method[J]. Journal of Crystal Growth, 2002, 240: 454-458.
[24] [24] Wang J, Yuan L, Zhang Y, et al. Generation of 320 mW at 10.20 μm based on CdSe long-wave infrared crystal[J]. Journal of Crystal Growth, 2018.
[25] [25] Akimov V A, Frolov M P, Korostelin Y V, et al.Vapour growth of II-VI single crystals doped by transition metals for mid-infrared lasers[J]. Physica Status Solidi (c), 2006, 3: 1213-1216.
[26] [26] Herbst R L. Singly resonant CdSe infrared parametric oscillator[J]. Applied Physics Letters,1972,21(5): 189.
[27] [27] Davydov A A, Kulevskii L A, Prokhorov A M, et al. A tunable infrared parametric oscillator in a CdSe crystal[J]. Optics Communications, 1973, 9(3): 234-236.
[28] [28] Allik T H, Chandra S, Rines D M, et al. Tunable 7-12 μm optical parametric oscillator using a Cr,Er∶YSGG laser to pump CdSe and ZnGeP2 crystals[J]. Optics Letters, 1997, 22(9): 597-599.
[29] [29] Watson M A, O’Connor M V, Shepherd D P, et al. Synchronously pumped CdSe optical parametric oscillator in the 9-10 mm region[J].Opt. Lett.,2003(28): 1957-1959.
[30] [30] Yao B Q, Li G, Zhu G L, et al. Comparative investigation of long-wave infrared generation based on ZnGeP2 and CdSe optical parametric oscillators[J]. Chin. Phys. B,2012,21: 034213.
[31] [31] Yuan J H, Chen Y, Duan X M, et al. CdSe optical parametric oscillator operating at 12.07 μm with 170 mW output[J]. Optics & Laser Technology, 2017.
[32] [32] Chen Y, Liu G, Yang C, et al. 1 W, 10.1 μm, CdSe optical parametric oscillator with continuous-wave seed injection[J]. Optics Letters, 2020, 45(7): 2119-2122.
[33] [33] Schepler K, Kück S, Shiozawa L. Emission spectroscopy in CdSe[J]. J. Luminesc, 1997: 72-74, 116-117.
[34] [34] McKay J, Schepler K L, Catella G C. Efficient grating-tuned mid-infrared Cr2+∶CdSe laser[J]. Opt. Lett,1999,24: 1575-1577.
[35] [35] Kasiyan V, Dashevsky Z, Shneck R, et al. Novel lasing materials based on CdSe crystals doped with Cr[J]. Proc. SPIE,2003,5123: 79-84.
[36] [36] Mckay J, Schepler K L, Catella G C. Efficient grating-tuned mid-infrared Cr2+: CdSe laser[J]. Optics Letters, 1999, 24(22): 1575-1577.
[37] [37] Akimov V A, Kozlovskii V I, Korostelin Yu V. Efficient pulsed Cr2+∶CdSe laser continuously tunable in the spectral range from 2.26 to 3.61 μm[J]. quantum electronics, 2008, 38(3): 205-208.
[38] [38] Gubin M A, Kireev A N, Yu V, et al. Tunable single-frequency CW Cr2+∶CdSe laser[J]. Bull. Lebedev Phys.Inst, 2011, 38(7): 205-208.
[39] [39] Kozlovskii V I, Korostelin Y V, Okhotnikov O G, et al. CW Cr2+∶CdSe laser pumped by semiconductor disk laser[J]. Bulletin of the Lebedev Physics Institute, 2012, 39(6): 181-184.
[40] [40] Lazarev V A, Tarabrin M K, Kovtun A A, et al. Continuous-wave broadly tunable diode laser array-pumped mid-infrared Cr2+∶CdSe laser[J]. Laser Physics Letters, 2015, 12(12): 125003.
[41] [41] Fernandez T T, Tarabrin M T, Wang Y, et al. Thermo-optical and lasing characteristics of Cr2+-doped CdSe single crystal as tunable coherent source in the mid-infrared[J]. Optical Materials Express, 2017, 7(11): 3815.
Get Citation
Copy Citation Text
YANG Hui, YANG Ming, KONG Bo, ZHANG Min, AN Xinyou, ZENG Tixian. Research Progress of CdSe Crystal and Cr2+-doped Laser[J]. Journal of Synthetic Crystals, 2020, 49(8): 1412
Category:
Received: --
Accepted: --
Published Online: Nov. 11, 2020
The Author Email: Tixian ZENG (zengtxnc@163.com)
CSTR:32186.14.