Journal of the Chinese Ceramic Society, Volume. 52, Issue 9, 3027(2024)

Photothermal Catalytic Reforming of Cellulose for Hydrogen Production with CuNi Alloylpalygorskite nanocomposites

YE Xuhua... GAO Rongrong, WANG Binyan, WU Meng, YAO Chao and LI Xiazhang* |Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    References(12)

    [1] [1] RESTREPO J C, LUIS IZIDORO D, MILENA LOZANO NáSNER A,et al. Techno-economical evaluation of renewable hydrogen production through concentrated solar energy[J]. Energy Convers Manag, 2022,258: 115372.

    [3] [3] KUEHNEL M F, REISNER E. Solar hydrogen generation from lignocellulose[J]. Angew Chem Int Ed Engl, 2018, 57(13): 3290–3296.

    [4] [4] WANG A G, BERTON P, ZHAO H, et al. Plasmon-enhanced 5-hydroxymethylfurfural production from the photothermal conversion of cellulose in a biphasic medium[J]. ACS Sustainable Chem Eng, 2021,9(48): 16115–16122.

    [5] [5] GONG Z, JI J L, WANG J G. Photocatalytic reversible reactions driven by localized surface plasmon resonance[J]. Catalysts, 2019, 9(2): 193.

    [6] [6] ZHONG M, LI X, CHU X, et al. Solar driven catalytic conversion of cellulose biomass into lactic acid over copper reconstructed natural mineral[J], Appl Catal B-Environ, 2022, 317: 121718

    [7] [7] LUO S Q, SONG H, PHILO D, et al. Solar-driven production of hydrogen and acetaldehyde from ethanol on Ni-Cu bimetallic catalysts with solar-to-fuels conversion efficiency up to 3.8 %[J]. Appl Catal B Environ, 2020, 272: 118965.

    [8] [8] JIANG H, GONG S Q, XU S, et al. Bimetal composites for photocatalytic reduction of CO2 to CO in the near-infrared region by the SPR effect[J]. Dalton Trans, 2020, 49(16): 5074–5086.

    [10] [10] ZHANG P Y, SONG T, WANG T T, et al. Fabrication of a non-semiconductor photocatalytic system using dendrite-like plasmonic CuNi bimetal combined with a reduced graphene oxide nanosheet for near-infrared photocatalytic H2 evolution[J]. J Mater Chem A, 2017,5(43): 22772–22781.

    [12] [12] LI X Z, SHI H Y, ZUO S X, et al. Lattice reconstruction of one-dimensional mineral to achieve dendritic heterojunction for cost-effective nitrogen photofixation[J]. Chem Eng J, 2021, 414:128797.

    [13] [13] ZHAO H, YU X T, HU G C, et al. Confined synthesis of BiVO4 nanodot and ZnO cluster co-decorated 3DOM TiO2 for formic acid production from the xylan-based hemicellulose photorefinery[J]. Green Chem, 2021, 23(20): 8124–8130.

    [14] [14] JIN D N, JIAO G J, REN W F, et al. Boosting photocatalytic performance for selective oxidation of biomass-derived pentoses and hexoses to lactic acid using hierarchically porous Cu/Cu2O/CuO@CA[J]. J Mater Chem C, 2021, 9(46): 16450–16458.

    [15] [15] YANG Z M, GAO R R, ZHONG M H, et al. Development of CuFe2O4/Palygorskite nanocomposite for photocatalytic cellulose reformation coupled with nitrogen fixation[J]. Appl Clay Sci, 2023, 238:106919.

    Tools

    Get Citation

    Copy Citation Text

    YE Xuhua, GAO Rongrong, WANG Binyan, WU Meng, YAO Chao, LI Xiazhang. Photothermal Catalytic Reforming of Cellulose for Hydrogen Production with CuNi Alloylpalygorskite nanocomposites[J]. Journal of the Chinese Ceramic Society, 2024, 52(9): 3027

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 11, 2023

    Accepted: --

    Published Online: Nov. 8, 2024

    The Author Email: Xiazhang LI (xiazhang@cczu.edu.cn)

    DOI:10.14062/j.issn.0454-5648.20230782

    Topics