Journal of the Chinese Ceramic Society, Volume. 52, Issue 9, 3027(2024)
Photothermal Catalytic Reforming of Cellulose for Hydrogen Production with CuNi Alloylpalygorskite nanocomposites
[1] [1] RESTREPO J C, LUIS IZIDORO D, MILENA LOZANO NáSNER A,et al. Techno-economical evaluation of renewable hydrogen production through concentrated solar energy[J]. Energy Convers Manag, 2022,258: 115372.
[3] [3] KUEHNEL M F, REISNER E. Solar hydrogen generation from lignocellulose[J]. Angew Chem Int Ed Engl, 2018, 57(13): 3290–3296.
[4] [4] WANG A G, BERTON P, ZHAO H, et al. Plasmon-enhanced 5-hydroxymethylfurfural production from the photothermal conversion of cellulose in a biphasic medium[J]. ACS Sustainable Chem Eng, 2021,9(48): 16115–16122.
[5] [5] GONG Z, JI J L, WANG J G. Photocatalytic reversible reactions driven by localized surface plasmon resonance[J]. Catalysts, 2019, 9(2): 193.
[6] [6] ZHONG M, LI X, CHU X, et al. Solar driven catalytic conversion of cellulose biomass into lactic acid over copper reconstructed natural mineral[J], Appl Catal B-Environ, 2022, 317: 121718
[7] [7] LUO S Q, SONG H, PHILO D, et al. Solar-driven production of hydrogen and acetaldehyde from ethanol on Ni-Cu bimetallic catalysts with solar-to-fuels conversion efficiency up to 3.8 %[J]. Appl Catal B Environ, 2020, 272: 118965.
[8] [8] JIANG H, GONG S Q, XU S, et al. Bimetal composites for photocatalytic reduction of CO2 to CO in the near-infrared region by the SPR effect[J]. Dalton Trans, 2020, 49(16): 5074–5086.
[10] [10] ZHANG P Y, SONG T, WANG T T, et al. Fabrication of a non-semiconductor photocatalytic system using dendrite-like plasmonic CuNi bimetal combined with a reduced graphene oxide nanosheet for near-infrared photocatalytic H2 evolution[J]. J Mater Chem A, 2017,5(43): 22772–22781.
[12] [12] LI X Z, SHI H Y, ZUO S X, et al. Lattice reconstruction of one-dimensional mineral to achieve dendritic heterojunction for cost-effective nitrogen photofixation[J]. Chem Eng J, 2021, 414:128797.
[13] [13] ZHAO H, YU X T, HU G C, et al. Confined synthesis of BiVO4 nanodot and ZnO cluster co-decorated 3DOM TiO2 for formic acid production from the xylan-based hemicellulose photorefinery[J]. Green Chem, 2021, 23(20): 8124–8130.
[14] [14] JIN D N, JIAO G J, REN W F, et al. Boosting photocatalytic performance for selective oxidation of biomass-derived pentoses and hexoses to lactic acid using hierarchically porous Cu/Cu2O/CuO@CA[J]. J Mater Chem C, 2021, 9(46): 16450–16458.
[15] [15] YANG Z M, GAO R R, ZHONG M H, et al. Development of CuFe2O4/Palygorskite nanocomposite for photocatalytic cellulose reformation coupled with nitrogen fixation[J]. Appl Clay Sci, 2023, 238:106919.
Get Citation
Copy Citation Text
YE Xuhua, GAO Rongrong, WANG Binyan, WU Meng, YAO Chao, LI Xiazhang. Photothermal Catalytic Reforming of Cellulose for Hydrogen Production with CuNi Alloylpalygorskite nanocomposites[J]. Journal of the Chinese Ceramic Society, 2024, 52(9): 3027
Category:
Received: Oct. 11, 2023
Accepted: --
Published Online: Nov. 8, 2024
The Author Email: Xiazhang LI (xiazhang@cczu.edu.cn)